Spaces:
Runtime error
Runtime error
File size: 19,355 Bytes
12b0903 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Validate a trained YOLOv5 model accuracy on a custom dataset
Usage:
$ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640
"""
import argparse
import json
import os
import sys
from pathlib import Path
from threading import Thread
import numpy as np
import torch
from tqdm import tqdm
FILE = Path(__file__).absolute()
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
from models.experimental import attempt_load
from utils.callbacks import Callbacks
from utils.datasets import create_dataloader
from utils.general import (
box_iou,
check_dataset,
check_img_size,
check_requirements,
check_suffix,
check_yaml,
coco80_to_coco91_class,
colorstr,
increment_path,
non_max_suppression,
scale_coords,
set_logging,
xywh2xyxy,
xyxy2xywh,
)
from utils.metrics import ConfusionMatrix, ap_per_class
from utils.plots import output_to_target, plot_images, plot_study_txt
from utils.torch_utils import select_device, time_sync
def save_one_txt(predn, save_conf, shape, file):
# Save one txt result
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in predn.tolist():
xywh = (
(xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
) # normalized xywh
line = (
(cls, *xywh, conf) if save_conf else (cls, *xywh)
) # label format
with open(file, "a") as f:
f.write(("%g " * len(line)).rstrip() % line + "\n")
def save_one_json(predn, jdict, path, class_map):
# Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
box = xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(predn.tolist(), box.tolist()):
jdict.append(
{
"image_id": image_id,
"category_id": class_map[int(p[5])],
"bbox": [round(x, 3) for x in b],
"score": round(p[4], 5),
}
)
def process_batch(detections, labels, iouv):
"""
Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
Arguments:
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
labels (Array[M, 5]), class, x1, y1, x2, y2
Returns:
correct (Array[N, 10]), for 10 IoU levels
"""
correct = torch.zeros(
detections.shape[0],
iouv.shape[0],
dtype=torch.bool,
device=iouv.device,
)
iou = box_iou(labels[:, 1:], detections[:, :4])
x = torch.where(
(iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])
) # IoU above threshold and classes match
if x[0].shape[0]:
matches = (
torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1)
.cpu()
.numpy()
) # [label, detection, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
matches = torch.Tensor(matches).to(iouv.device)
correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv
return correct
@torch.no_grad()
def run(
data,
weights=None, # model.pt path(s)
batch_size=32, # batch size
imgsz=640, # inference size (pixels)
conf_thres=0.001, # confidence threshold
iou_thres=0.6, # NMS IoU threshold
task="val", # train, val, test, speed or study
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
single_cls=False, # treat as single-class dataset
augment=False, # augmented inference
verbose=False, # verbose output
save_txt=False, # save results to *.txt
save_hybrid=False, # save label+prediction hybrid results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_json=False, # save a COCO-JSON results file
project="runs/val", # save to project/name
name="exp", # save to project/name
exist_ok=False, # existing project/name ok, do not increment
half=True, # use FP16 half-precision inference
model=None,
dataloader=None,
save_dir=Path(""),
plots=True,
callbacks=Callbacks(),
compute_loss=None,
):
# Initialize/load model and set device
training = model is not None
if training: # called by train.py
device = next(model.parameters()).device # get model device
else: # called directly
device = select_device(device, batch_size=batch_size)
# Directories
save_dir = increment_path(
Path(project) / name, exist_ok=exist_ok
) # increment run
(save_dir / "labels" if save_txt else save_dir).mkdir(
parents=True, exist_ok=True
) # make dir
# Load model
check_suffix(weights, ".pt")
model = attempt_load(weights, map_location=device) # load FP32 model
gs = max(int(model.stride.max()), 32) # grid size (max stride)
imgsz = check_img_size(imgsz, s=gs) # check image size
# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
# if device.type != 'cpu' and torch.cuda.device_count() > 1:
# model = nn.DataParallel(model)
# Data
data = check_dataset(data) # check
# Half
half &= device.type != "cpu" # half precision only supported on CUDA
if half:
model.half()
# Configure
model.eval()
is_coco = isinstance(data.get("val"), str) and data["val"].endswith(
"coco/val2017.txt"
) # COCO dataset
nc = 1 if single_cls else int(data["nc"]) # number of classes
iouv = torch.linspace(0.5, 0.95, 10).to(
device
) # iou vector for [email protected]:0.95
niou = iouv.numel()
# Dataloader
if not training:
if device.type != "cpu":
model(
torch.zeros(1, 3, imgsz, imgsz)
.to(device)
.type_as(next(model.parameters()))
) # run once
task = (
task if task in ("train", "val", "test") else "val"
) # path to train/val/test images
dataloader = create_dataloader(
data[task],
imgsz,
batch_size,
gs,
single_cls,
pad=0.5,
rect=True,
prefix=colorstr(f"{task}: "),
)[0]
seen = 0
confusion_matrix = ConfusionMatrix(nc=nc)
names = {
k: v
for k, v in enumerate(
model.names if hasattr(model, "names") else model.module.names
)
}
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
s = ("%20s" + "%11s" * 6) % (
"Class",
"Images",
"Labels",
"P",
"R",
"[email protected]",
"[email protected]:.95",
)
dt, p, r, f1, mp, mr, map50, map = (
[0.0, 0.0, 0.0],
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
)
loss = torch.zeros(3, device=device)
jdict, stats, ap, ap_class = [], [], [], []
for batch_i, (img, targets, paths, shapes) in enumerate(
tqdm(dataloader, desc=s)
):
t1 = time_sync()
img = img.to(device, non_blocking=True)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
targets = targets.to(device)
nb, _, height, width = img.shape # batch size, channels, height, width
t2 = time_sync()
dt[0] += t2 - t1
# Run model
out, train_out = model(
img, augment=augment
) # inference and training outputs
dt[1] += time_sync() - t2
# Compute loss
if compute_loss:
loss += compute_loss([x.float() for x in train_out], targets)[
1
] # box, obj, cls
# Run NMS
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(
device
) # to pixels
lb = (
[targets[targets[:, 0] == i, 1:] for i in range(nb)]
if save_hybrid
else []
) # for autolabelling
t3 = time_sync()
out = non_max_suppression(
out,
conf_thres,
iou_thres,
labels=lb,
multi_label=True,
agnostic=single_cls,
)
dt[2] += time_sync() - t3
# Statistics per image
for si, pred in enumerate(out):
labels = targets[targets[:, 0] == si, 1:]
nl = len(labels)
tcls = labels[:, 0].tolist() if nl else [] # target class
path, shape = Path(paths[si]), shapes[si][0]
seen += 1
if len(pred) == 0:
if nl:
stats.append(
(
torch.zeros(0, niou, dtype=torch.bool),
torch.Tensor(),
torch.Tensor(),
tcls,
)
)
continue
# Predictions
if single_cls:
pred[:, 5] = 0
predn = pred.clone()
scale_coords(
img[si].shape[1:], predn[:, :4], shape, shapes[si][1]
) # native-space pred
# Evaluate
if nl:
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
scale_coords(
img[si].shape[1:], tbox, shape, shapes[si][1]
) # native-space labels
labelsn = torch.cat(
(labels[:, 0:1], tbox), 1
) # native-space labels
correct = process_batch(predn, labelsn, iouv)
if plots:
confusion_matrix.process_batch(predn, labelsn)
else:
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
stats.append(
(correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)
) # (correct, conf, pcls, tcls)
# Save/log
if save_txt:
save_one_txt(
predn,
save_conf,
shape,
file=save_dir / "labels" / (path.stem + ".txt"),
)
if save_json:
save_one_json(
predn, jdict, path, class_map
) # append to COCO-JSON dictionary
callbacks.run(
"on_val_image_end", pred, predn, path, names, img[si]
)
# Plot images
if plots and batch_i < 3:
f = save_dir / f"val_batch{batch_i}_labels.jpg" # labels
Thread(
target=plot_images,
args=(img, targets, paths, f, names),
daemon=True,
).start()
f = save_dir / f"val_batch{batch_i}_pred.jpg" # predictions
Thread(
target=plot_images,
args=(img, output_to_target(out), paths, f, names),
daemon=True,
).start()
# Compute statistics
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
if len(stats) and stats[0].any():
p, r, ap, f1, ap_class = ap_per_class(
*stats, plot=plots, save_dir=save_dir, names=names
)
ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
nt = np.bincount(
stats[3].astype(np.int64), minlength=nc
) # number of targets per class
else:
nt = torch.zeros(1)
# Print results
pf = "%20s" + "%11i" * 2 + "%11.3g" * 4 # print format
print(pf % ("all", seen, nt.sum(), mp, mr, map50, map))
# Print results per class
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
# Print speeds
t = tuple(x / seen * 1e3 for x in dt) # speeds per image
if not training:
shape = (batch_size, 3, imgsz, imgsz)
print(
f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}"
% t
)
# Plots
if plots:
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
callbacks.run("on_val_end")
# Save JSON
if save_json and len(jdict):
w = (
Path(weights[0] if isinstance(weights, list) else weights).stem
if weights is not None
else ""
) # weights
anno_json = str(
Path(data.get("path", "../coco"))
/ "annotations/instances_val2017.json"
) # annotations json
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
print(f"\nEvaluating pycocotools mAP... saving {pred_json}...")
with open(pred_json, "w") as f:
json.dump(jdict, f)
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
check_requirements(["pycocotools"])
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
anno = COCO(anno_json) # init annotations api
pred = anno.loadRes(pred_json) # init predictions api
eval = COCOeval(anno, pred, "bbox")
if is_coco:
eval.params.imgIds = [
int(Path(x).stem) for x in dataloader.dataset.img_files
] # image IDs to evaluate
eval.evaluate()
eval.accumulate()
eval.summarize()
map, map50 = eval.stats[
:2
] # update results ([email protected]:0.95, [email protected])
except Exception as e:
print(f"pycocotools unable to run: {e}")
# Return results
model.float() # for training
if not training:
s = (
f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}"
if save_txt
else ""
)
print(f"Results saved to {colorstr('bold', save_dir)}{s}")
maps = np.zeros(nc) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
return (
(mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()),
maps,
t,
)
def parse_opt():
parser = argparse.ArgumentParser(prog="val.py")
parser.add_argument(
"--data",
type=str,
default="data/coco128.yaml",
help="dataset.yaml path",
)
parser.add_argument(
"--weights",
nargs="+",
type=str,
default="yolov5s.pt",
help="model.pt path(s)",
)
parser.add_argument(
"--batch-size", type=int, default=32, help="batch size"
)
parser.add_argument(
"--imgsz",
"--img",
"--img-size",
type=int,
default=640,
help="inference size (pixels)",
)
parser.add_argument(
"--conf-thres", type=float, default=0.001, help="confidence threshold"
)
parser.add_argument(
"--iou-thres", type=float, default=0.6, help="NMS IoU threshold"
)
parser.add_argument(
"--task", default="val", help="train, val, test, speed or study"
)
parser.add_argument(
"--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
)
parser.add_argument(
"--single-cls",
action="store_true",
help="treat as single-class dataset",
)
parser.add_argument(
"--augment", action="store_true", help="augmented inference"
)
parser.add_argument(
"--verbose", action="store_true", help="report mAP by class"
)
parser.add_argument(
"--save-txt", action="store_true", help="save results to *.txt"
)
parser.add_argument(
"--save-hybrid",
action="store_true",
help="save label+prediction hybrid results to *.txt",
)
parser.add_argument(
"--save-conf",
action="store_true",
help="save confidences in --save-txt labels",
)
parser.add_argument(
"--save-json",
action="store_true",
help="save a COCO-JSON results file",
)
parser.add_argument(
"--project", default="runs/val", help="save to project/name"
)
parser.add_argument("--name", default="exp", help="save to project/name")
parser.add_argument(
"--exist-ok",
action="store_true",
help="existing project/name ok, do not increment",
)
parser.add_argument(
"--half", action="store_true", help="use FP16 half-precision inference"
)
opt = parser.parse_args()
opt.save_json |= opt.data.endswith("coco.yaml")
opt.save_txt |= opt.save_hybrid
opt.data = check_yaml(opt.data) # check YAML
return opt
def main(opt):
set_logging()
print(
colorstr("val: ") + ", ".join(f"{k}={v}" for k, v in vars(opt).items())
)
check_requirements(
requirements=FILE.parent / "requirements.txt",
exclude=("tensorboard", "thop"),
)
if opt.task in ("train", "val", "test"): # run normally
run(**vars(opt))
elif opt.task == "speed": # speed benchmarks
for w in (
opt.weights if isinstance(opt.weights, list) else [opt.weights]
):
run(
opt.data,
weights=w,
batch_size=opt.batch_size,
imgsz=opt.imgsz,
conf_thres=0.25,
iou_thres=0.45,
save_json=False,
plots=False,
)
elif opt.task == "study": # run over a range of settings and save/plot
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
for w in (
opt.weights if isinstance(opt.weights, list) else [opt.weights]
):
f = f"study_{Path(opt.data).stem}_{Path(w).stem}.txt" # filename to save to
y = [] # y axis
for i in x: # img-size
print(f"\nRunning {f} point {i}...")
r, _, t = run(
opt.data,
weights=w,
batch_size=opt.batch_size,
imgsz=i,
conf_thres=opt.conf_thres,
iou_thres=opt.iou_thres,
save_json=opt.save_json,
plots=False,
)
y.append(r + t) # results and times
np.savetxt(f, y, fmt="%10.4g") # save
os.system("zip -r study.zip study_*.txt")
plot_study_txt(x=x) # plot
if __name__ == "__main__":
opt = parse_opt()
main(opt)
|