Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import cv2 | |
import pytesseract | |
import numpy as np | |
from PIL import Image | |
from ultralytics import YOLO | |
# Load model | |
model = YOLO("/home/user/app/best.pt") | |
# Label map | |
label_map = {0: "Analog", 1: "Digital", 2: "Non-LP"} | |
def process_frame(frame): | |
# Resize to YOLO input shape | |
input_img = cv2.resize(frame, (640, 640)) | |
results = model(input_img)[0] | |
detections = results.boxes.data.cpu().numpy() | |
extracted_texts = [] | |
confidences = [] | |
for det in detections: | |
if len(det) < 6: | |
continue | |
x1, y1, x2, y2, conf, cls = det | |
x1, y1, x2, y2 = map(int, [x1, y1, x2, y2]) | |
label = label_map.get(int(cls), "Unknown") | |
percent = f"{conf * 100:.2f}%" | |
# Draw box and label on image | |
cv2.rectangle(input_img, (x1, y1), (x2, y2), (255, 0, 0), 2) | |
cv2.putText(input_img, f"{label}: {percent}", (x1, y1 - 10), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2) | |
# OCR | |
cropped = frame[y1:y2, x1:x2] # Use original frame for OCR | |
if cropped.size > 0: | |
gray = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY) | |
text = pytesseract.image_to_string(gray, config="--psm 6 -l ben") | |
extracted_texts.append(text.strip()) | |
confidences.append(percent) | |
# Convert to PIL | |
annotated = cv2.cvtColor(input_img, cv2.COLOR_BGR2RGB) | |
pil_img = Image.fromarray(annotated) | |
return pil_img, "\n".join(extracted_texts), ", ".join(confidences) | |
def process_input(input_file): | |
file_path = input_file.name | |
if file_path.endswith(('.mp4', '.avi', '.mov')): | |
cap = cv2.VideoCapture(file_path) | |
ret, frame = cap.read() | |
cap.release() | |
if not ret: | |
return None, "Couldn't read video", "" | |
else: | |
frame = cv2.imread(file_path) | |
if frame is None: | |
return None, "Invalid image", "" | |
return process_frame(frame) | |
interface = gr.Interface( | |
fn=process_input, | |
inputs=gr.File(type="filepath", label="Upload Image or Video"), | |
outputs=[ | |
gr.Image(type="pil", label="Detected Output"), | |
gr.Textbox(label="Detected Text (Bangla)"), | |
gr.Textbox(label="Confidence (%)") | |
], | |
title="YOLOv10n License Plate Detector (Bangla)", | |
description="Upload an image or video. Detects license plates and extracts Bangla text using OCR." | |
) | |
interface.launch() | |