Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,65 +4,52 @@ import cv2
|
|
4 |
import pytesseract
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
7 |
-
import sys
|
8 |
-
import os
|
9 |
-
|
10 |
from ultralytics import YOLO
|
11 |
|
12 |
# Load model
|
13 |
-
model = YOLO("/home/user/app/best.pt")
|
14 |
-
|
15 |
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
# Frame processing function
|
19 |
def process_frame(frame):
|
20 |
-
# Resize
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
img_tensor = torch.from_numpy(img).permute(2, 0, 1).float() / 255.0
|
25 |
-
img_tensor = img_tensor.unsqueeze(0)
|
26 |
-
|
27 |
-
# Run inference with the YOLO model (no need to manually apply nms)
|
28 |
-
results = model(img_tensor, augment=False)
|
29 |
-
|
30 |
-
# Extract results (list of detections)
|
31 |
-
detections = results.xywh[0] # YOLO's detection results
|
32 |
|
33 |
extracted_texts = []
|
34 |
confidences = []
|
35 |
|
36 |
for det in detections:
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
# OCR
|
56 |
-
lp_crop = frame[y1:y2, x1:x2]
|
57 |
-
gray = cv2.cvtColor(lp_crop, cv2.COLOR_BGR2GRAY)
|
58 |
text = pytesseract.image_to_string(gray, config="--psm 6 -l ben")
|
59 |
extracted_texts.append(text.strip())
|
60 |
confidences.append(percent)
|
61 |
|
62 |
-
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
-
# Input handler
|
66 |
def process_input(input_file):
|
67 |
file_path = input_file.name
|
68 |
|
@@ -77,9 +64,8 @@ def process_input(input_file):
|
|
77 |
if frame is None:
|
78 |
return None, "Invalid image", ""
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
return processed_pil, text, confidence
|
83 |
|
84 |
interface = gr.Interface(
|
85 |
fn=process_input,
|
@@ -90,7 +76,7 @@ interface = gr.Interface(
|
|
90 |
gr.Textbox(label="Confidence (%)")
|
91 |
],
|
92 |
title="YOLOv10n License Plate Detector (Bangla)",
|
93 |
-
description="Upload an image or video. Detects plates and extracts Bangla text using OCR
|
94 |
)
|
95 |
|
96 |
interface.launch()
|
|
|
4 |
import pytesseract
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
|
|
|
|
|
|
7 |
from ultralytics import YOLO
|
8 |
|
9 |
# Load model
|
10 |
+
model = YOLO("/home/user/app/best.pt")
|
|
|
11 |
|
12 |
+
# Label map
|
13 |
+
label_map = {0: "Analog", 1: "Digital", 2: "Non-LP"}
|
14 |
|
|
|
|
|
15 |
def process_frame(frame):
|
16 |
+
# Resize to YOLO input shape
|
17 |
+
input_img = cv2.resize(frame, (640, 640))
|
18 |
+
results = model(input_img)[0]
|
19 |
+
detections = results.boxes.data.cpu().numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
extracted_texts = []
|
22 |
confidences = []
|
23 |
|
24 |
for det in detections:
|
25 |
+
if len(det) < 6:
|
26 |
+
continue
|
27 |
+
|
28 |
+
x1, y1, x2, y2, conf, cls = det
|
29 |
+
x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
|
30 |
+
label = label_map.get(int(cls), "Unknown")
|
31 |
+
percent = f"{conf * 100:.2f}%"
|
32 |
+
|
33 |
+
# Draw box and label on image
|
34 |
+
cv2.rectangle(input_img, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
35 |
+
cv2.putText(input_img, f"{label}: {percent}", (x1, y1 - 10),
|
36 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
|
37 |
+
|
38 |
+
# OCR
|
39 |
+
cropped = frame[y1:y2, x1:x2] # Use original frame for OCR
|
40 |
+
if cropped.size > 0:
|
41 |
+
gray = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
|
|
42 |
text = pytesseract.image_to_string(gray, config="--psm 6 -l ben")
|
43 |
extracted_texts.append(text.strip())
|
44 |
confidences.append(percent)
|
45 |
|
46 |
+
# Convert to PIL
|
47 |
+
annotated = cv2.cvtColor(input_img, cv2.COLOR_BGR2RGB)
|
48 |
+
pil_img = Image.fromarray(annotated)
|
49 |
+
|
50 |
+
return pil_img, "\n".join(extracted_texts), ", ".join(confidences)
|
51 |
|
52 |
|
|
|
53 |
def process_input(input_file):
|
54 |
file_path = input_file.name
|
55 |
|
|
|
64 |
if frame is None:
|
65 |
return None, "Invalid image", ""
|
66 |
|
67 |
+
return process_frame(frame)
|
68 |
+
|
|
|
69 |
|
70 |
interface = gr.Interface(
|
71 |
fn=process_input,
|
|
|
76 |
gr.Textbox(label="Confidence (%)")
|
77 |
],
|
78 |
title="YOLOv10n License Plate Detector (Bangla)",
|
79 |
+
description="Upload an image or video. Detects license plates and extracts Bangla text using OCR."
|
80 |
)
|
81 |
|
82 |
interface.launch()
|