Spaces:
Runtime error
Runtime error
File size: 4,842 Bytes
a4e79cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import gradio as gr
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
import torch.nn.init as init
class Fire(nn.Module):
def __init__(self, inplanes: int, squeeze_planes: int, expand1x1_planes: int, expand3x3_planes: int) -> None:
super().__init__()
self.inplanes = inplanes
self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)
self.squeeze_activation = nn.ReLU(inplace=True)
self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes, kernel_size=1)
self.expand1x1_activation = nn.ReLU(inplace=True)
self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes, kernel_size=3, padding=1)
self.expand3x3_activation = nn.ReLU(inplace=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.squeeze_activation(self.squeeze(x))
return torch.cat(
[self.expand1x1_activation(self.expand1x1(x)), self.expand3x3_activation(self.expand3x3(x))], 1
)
class SqueezeNet(nn.Module):
def __init__(self, version: str = "1_0", num_classes: int = 1000, dropout: float = 0.5) -> None:
super().__init__()
# _log_api_usage_once(self)
self.num_classes = num_classes
if version == "1_0":
self.features = nn.Sequential(
nn.Conv2d(3, 96, kernel_size=7, stride=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(96, 16, 64, 64),
Fire(128, 16, 64, 64),
Fire(128, 32, 128, 128),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(256, 32, 128, 128),
Fire(256, 48, 192, 192),
Fire(384, 48, 192, 192),
Fire(384, 64, 256, 256),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(512, 64, 256, 256),
)
elif version == "middle": # 0.78 mb
self.features = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(32, 8, 32, 32),
Fire(64, 8, 32, 32),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(64, 16, 64, 64),
Fire(128, 16, 64, 64),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(128, 24, 96, 96),
Fire(192, 24, 96, 96),
Fire(192, 32, 128, 128),
Fire(256, 32, 128, 128),
)
else:
# FIXME: Is this needed? SqueezeNet should only be called from the
# FIXME: squeezenet1_x() functions
# FIXME: This checking is not done for the other models
raise ValueError(f"Unsupported SqueezeNet version {version}: 1_0 or 1_1 expected")
# Final convolution is initialized differently from the rest
# 512
final_conv = nn.Conv2d(256, self.num_classes, kernel_size=1)
self.classifier = nn.Sequential(
nn.Dropout(p=dropout), final_conv, nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d((1, 1))
)
for m in self.modules():
if isinstance(m, nn.Conv2d):
if m is final_conv:
init.normal_(m.weight, mean=0.0, std=0.01)
else:
init.kaiming_uniform_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.features(x)
x = self.classifier(x)
return torch.flatten(x, 1)
class SN(nn.Module):
def __init__(self):
super().__init__()
self.model = SqueezeNet(version="middle", num_classes=2)
def forward(self, x):
return self.model(x)
def predict(image):
model = SN()
model.load_state_dict(torch.load("./liveness_1M_model_0.8740054619288524 .ckpt", map_location=torch.device('cpu')))
im = Image.open(image)
transform1 = transforms.Compose([transforms.Resize((512, 512)),
transforms.ToTensor()])
img = transform1(im).unsqueeze(0)
my_softmax = nn.Softmax(dim=1)
with torch.no_grad():
y_hat = model(img)
liveness_score = float(my_softmax(y_hat)[0][1])
res = {"fake": liveness_score, "real": 1 - liveness_score}
return res
gr.Interface(
predict,
inputs=gr.inputs.Image(label="Upload an image", type="filepath"),
outputs=gr.outputs.Label(num_top_classes=2),
title="Real or Fake", examples=["./2022-10-12 16.52.56.jpg", "./2022-10-12 16.54.52.jpg", "./1724477482.jpeg"]
).launch() |