Saif-s commited on
Commit
a4e79cd
·
1 Parent(s): 597b120
1724477482.jpeg ADDED
2022-10-12 16.52.56.jpg ADDED
2022-10-12 16.54.52.jpg ADDED
app.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ import torch
4
+ import torch.nn as nn
5
+ import torchvision.transforms as transforms
6
+ from PIL import Image
7
+ import torch.nn.init as init
8
+
9
+ class Fire(nn.Module):
10
+ def __init__(self, inplanes: int, squeeze_planes: int, expand1x1_planes: int, expand3x3_planes: int) -> None:
11
+ super().__init__()
12
+ self.inplanes = inplanes
13
+ self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)
14
+ self.squeeze_activation = nn.ReLU(inplace=True)
15
+ self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes, kernel_size=1)
16
+ self.expand1x1_activation = nn.ReLU(inplace=True)
17
+ self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes, kernel_size=3, padding=1)
18
+ self.expand3x3_activation = nn.ReLU(inplace=True)
19
+
20
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
21
+ x = self.squeeze_activation(self.squeeze(x))
22
+ return torch.cat(
23
+ [self.expand1x1_activation(self.expand1x1(x)), self.expand3x3_activation(self.expand3x3(x))], 1
24
+ )
25
+
26
+ class SqueezeNet(nn.Module):
27
+ def __init__(self, version: str = "1_0", num_classes: int = 1000, dropout: float = 0.5) -> None:
28
+ super().__init__()
29
+ # _log_api_usage_once(self)
30
+ self.num_classes = num_classes
31
+ if version == "1_0":
32
+ self.features = nn.Sequential(
33
+ nn.Conv2d(3, 96, kernel_size=7, stride=2),
34
+ nn.ReLU(inplace=True),
35
+ nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
36
+ Fire(96, 16, 64, 64),
37
+ Fire(128, 16, 64, 64),
38
+ Fire(128, 32, 128, 128),
39
+ nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
40
+ Fire(256, 32, 128, 128),
41
+ Fire(256, 48, 192, 192),
42
+ Fire(384, 48, 192, 192),
43
+ Fire(384, 64, 256, 256),
44
+ nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
45
+ Fire(512, 64, 256, 256),
46
+ )
47
+ elif version == "middle": # 0.78 mb
48
+ self.features = nn.Sequential(
49
+ nn.Conv2d(3, 32, kernel_size=3, stride=2),
50
+ nn.ReLU(inplace=True),
51
+ nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
52
+ Fire(32, 8, 32, 32),
53
+ Fire(64, 8, 32, 32),
54
+ nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
55
+ Fire(64, 16, 64, 64),
56
+ Fire(128, 16, 64, 64),
57
+ nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
58
+ Fire(128, 24, 96, 96),
59
+ Fire(192, 24, 96, 96),
60
+ Fire(192, 32, 128, 128),
61
+ Fire(256, 32, 128, 128),
62
+ )
63
+
64
+ else:
65
+ # FIXME: Is this needed? SqueezeNet should only be called from the
66
+ # FIXME: squeezenet1_x() functions
67
+ # FIXME: This checking is not done for the other models
68
+ raise ValueError(f"Unsupported SqueezeNet version {version}: 1_0 or 1_1 expected")
69
+
70
+ # Final convolution is initialized differently from the rest
71
+ # 512
72
+ final_conv = nn.Conv2d(256, self.num_classes, kernel_size=1)
73
+ self.classifier = nn.Sequential(
74
+ nn.Dropout(p=dropout), final_conv, nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d((1, 1))
75
+ )
76
+
77
+ for m in self.modules():
78
+ if isinstance(m, nn.Conv2d):
79
+ if m is final_conv:
80
+ init.normal_(m.weight, mean=0.0, std=0.01)
81
+ else:
82
+ init.kaiming_uniform_(m.weight)
83
+ if m.bias is not None:
84
+ init.constant_(m.bias, 0)
85
+
86
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
87
+ x = self.features(x)
88
+ x = self.classifier(x)
89
+ return torch.flatten(x, 1)
90
+
91
+
92
+ class SN(nn.Module):
93
+ def __init__(self):
94
+ super().__init__()
95
+ self.model = SqueezeNet(version="middle", num_classes=2)
96
+
97
+ def forward(self, x):
98
+ return self.model(x)
99
+
100
+
101
+ def predict(image):
102
+
103
+ model = SN()
104
+ model.load_state_dict(torch.load("./liveness_1M_model_0.8740054619288524 .ckpt", map_location=torch.device('cpu')))
105
+ im = Image.open(image)
106
+ transform1 = transforms.Compose([transforms.Resize((512, 512)),
107
+ transforms.ToTensor()])
108
+ img = transform1(im).unsqueeze(0)
109
+ my_softmax = nn.Softmax(dim=1)
110
+ with torch.no_grad():
111
+ y_hat = model(img)
112
+ liveness_score = float(my_softmax(y_hat)[0][1])
113
+
114
+ res = {"fake": liveness_score, "real": 1 - liveness_score}
115
+ return res
116
+
117
+
118
+ gr.Interface(
119
+ predict,
120
+ inputs=gr.inputs.Image(label="Upload an image", type="filepath"),
121
+ outputs=gr.outputs.Label(num_top_classes=2),
122
+ title="Real or Fake", examples=["./2022-10-12 16.52.56.jpg", "./2022-10-12 16.54.52.jpg", "./1724477482.jpeg"]
123
+ ).launch()
liveness_1M_model_0.8740054619288524 .ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9db21af2c4bda70801b7c8ecd5b7bb7fff32452faf6c370a291b82b95719ad3e
3
+ size 748617