SagarManchekar commited on
Commit
e344362
·
1 Parent(s): f376286

Upload 2 files

Browse files
Files changed (2) hide show
  1. Salary_Data.csv +31 -0
  2. simple_linear_regression.py +39 -0
Salary_Data.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ YearsExperience,Salary
2
+ 1.1,39343.00
3
+ 1.3,46205.00
4
+ 1.5,37731.00
5
+ 2.0,43525.00
6
+ 2.2,39891.00
7
+ 2.9,56642.00
8
+ 3.0,60150.00
9
+ 3.2,54445.00
10
+ 3.2,64445.00
11
+ 3.7,57189.00
12
+ 3.9,63218.00
13
+ 4.0,55794.00
14
+ 4.0,56957.00
15
+ 4.1,57081.00
16
+ 4.5,61111.00
17
+ 4.9,67938.00
18
+ 5.1,66029.00
19
+ 5.3,83088.00
20
+ 5.9,81363.00
21
+ 6.0,93940.00
22
+ 6.8,91738.00
23
+ 7.1,98273.00
24
+ 7.9,101302.00
25
+ 8.2,113812.00
26
+ 8.7,109431.00
27
+ 9.0,105582.00
28
+ 9.5,116969.00
29
+ 9.6,112635.00
30
+ 10.3,122391.00
31
+ 10.5,121872.00
simple_linear_regression.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Simple Linear Regression
2
+
3
+ # Importing the libraries
4
+ import numpy as np
5
+ import matplotlib.pyplot as plt
6
+ import pandas as pd
7
+
8
+ # Importing the dataset
9
+ dataset = pd.read_csv('Salary_Data.csv')
10
+ X = dataset.iloc[:, :-1].values
11
+ y = dataset.iloc[:, -1].values
12
+
13
+ # Splitting the dataset into the Training set and Test set
14
+ from sklearn.model_selection import train_test_split
15
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 1/3, random_state = 0)
16
+
17
+ # Training the Simple Linear Regression model on the Training set
18
+ from sklearn.linear_model import LinearRegression
19
+ regressor = LinearRegression()
20
+ regressor.fit(X_train, y_train)
21
+
22
+ # Predicting the Test set results
23
+ y_pred = regressor.predict(X_test)
24
+
25
+ # Visualising the Training set results
26
+ plt.scatter(X_train, y_train, color = 'red')
27
+ plt.plot(X_train, regressor.predict(X_train), color = 'blue')
28
+ plt.title('Salary vs Experience (Training set)')
29
+ plt.xlabel('Years of Experience')
30
+ plt.ylabel('Salary')
31
+ plt.show()
32
+
33
+ # Visualising the Test set results
34
+ plt.scatter(X_test, y_test, color = 'red')
35
+ plt.plot(X_train, regressor.predict(X_train), color = 'blue')
36
+ plt.title('Salary vs Experience (Test set)')
37
+ plt.xlabel('Years of Experience')
38
+ plt.ylabel('Salary')
39
+ plt.show()