Spaces:
Runtime error
Runtime error
Commit
·
e344362
1
Parent(s):
f376286
Upload 2 files
Browse files- Salary_Data.csv +31 -0
- simple_linear_regression.py +39 -0
Salary_Data.csv
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
YearsExperience,Salary
|
2 |
+
1.1,39343.00
|
3 |
+
1.3,46205.00
|
4 |
+
1.5,37731.00
|
5 |
+
2.0,43525.00
|
6 |
+
2.2,39891.00
|
7 |
+
2.9,56642.00
|
8 |
+
3.0,60150.00
|
9 |
+
3.2,54445.00
|
10 |
+
3.2,64445.00
|
11 |
+
3.7,57189.00
|
12 |
+
3.9,63218.00
|
13 |
+
4.0,55794.00
|
14 |
+
4.0,56957.00
|
15 |
+
4.1,57081.00
|
16 |
+
4.5,61111.00
|
17 |
+
4.9,67938.00
|
18 |
+
5.1,66029.00
|
19 |
+
5.3,83088.00
|
20 |
+
5.9,81363.00
|
21 |
+
6.0,93940.00
|
22 |
+
6.8,91738.00
|
23 |
+
7.1,98273.00
|
24 |
+
7.9,101302.00
|
25 |
+
8.2,113812.00
|
26 |
+
8.7,109431.00
|
27 |
+
9.0,105582.00
|
28 |
+
9.5,116969.00
|
29 |
+
9.6,112635.00
|
30 |
+
10.3,122391.00
|
31 |
+
10.5,121872.00
|
simple_linear_regression.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Simple Linear Regression
|
2 |
+
|
3 |
+
# Importing the libraries
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
# Importing the dataset
|
9 |
+
dataset = pd.read_csv('Salary_Data.csv')
|
10 |
+
X = dataset.iloc[:, :-1].values
|
11 |
+
y = dataset.iloc[:, -1].values
|
12 |
+
|
13 |
+
# Splitting the dataset into the Training set and Test set
|
14 |
+
from sklearn.model_selection import train_test_split
|
15 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 1/3, random_state = 0)
|
16 |
+
|
17 |
+
# Training the Simple Linear Regression model on the Training set
|
18 |
+
from sklearn.linear_model import LinearRegression
|
19 |
+
regressor = LinearRegression()
|
20 |
+
regressor.fit(X_train, y_train)
|
21 |
+
|
22 |
+
# Predicting the Test set results
|
23 |
+
y_pred = regressor.predict(X_test)
|
24 |
+
|
25 |
+
# Visualising the Training set results
|
26 |
+
plt.scatter(X_train, y_train, color = 'red')
|
27 |
+
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
|
28 |
+
plt.title('Salary vs Experience (Training set)')
|
29 |
+
plt.xlabel('Years of Experience')
|
30 |
+
plt.ylabel('Salary')
|
31 |
+
plt.show()
|
32 |
+
|
33 |
+
# Visualising the Test set results
|
34 |
+
plt.scatter(X_test, y_test, color = 'red')
|
35 |
+
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
|
36 |
+
plt.title('Salary vs Experience (Test set)')
|
37 |
+
plt.xlabel('Years of Experience')
|
38 |
+
plt.ylabel('Salary')
|
39 |
+
plt.show()
|