Spaces:
Runtime error
Runtime error
Commit
·
f376286
1
Parent(s):
f0fd71d
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,104 +0,0 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
"""logistic_regression.ipynb
|
| 3 |
-
|
| 4 |
-
Automatically generated by Colaboratory.
|
| 5 |
-
|
| 6 |
-
Original file is located at
|
| 7 |
-
https://colab.research.google.com/drive/1-Slk6y5-E3eUnmM4vjtoRrGMoIKvD0hU
|
| 8 |
-
|
| 9 |
-
# Logistic Regression
|
| 10 |
-
|
| 11 |
-
## Importing the libraries
|
| 12 |
-
"""
|
| 13 |
-
|
| 14 |
-
import numpy as np
|
| 15 |
-
import matplotlib.pyplot as plt
|
| 16 |
-
import pandas as pd
|
| 17 |
-
|
| 18 |
-
"""## Importing the dataset"""
|
| 19 |
-
|
| 20 |
-
dataset = pd.read_csv('Social_Network_Ads.csv')
|
| 21 |
-
X = dataset.iloc[:, :-1].values
|
| 22 |
-
y = dataset.iloc[:, -1].values
|
| 23 |
-
|
| 24 |
-
"""## Splitting the dataset into the Training set and Test set"""
|
| 25 |
-
|
| 26 |
-
from sklearn.model_selection import train_test_split
|
| 27 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
|
| 28 |
-
|
| 29 |
-
print(X_train)
|
| 30 |
-
|
| 31 |
-
print(y_train)
|
| 32 |
-
|
| 33 |
-
print(X_test)
|
| 34 |
-
|
| 35 |
-
print(y_test)
|
| 36 |
-
|
| 37 |
-
"""## Feature Scaling"""
|
| 38 |
-
|
| 39 |
-
from sklearn.preprocessing import StandardScaler
|
| 40 |
-
sc = StandardScaler()
|
| 41 |
-
X_train = sc.fit_transform(X_train)
|
| 42 |
-
X_test = sc.transform(X_test)
|
| 43 |
-
|
| 44 |
-
print(X_train)
|
| 45 |
-
|
| 46 |
-
print(X_test)
|
| 47 |
-
|
| 48 |
-
"""## Training the Logistic Regression model on the Training set"""
|
| 49 |
-
|
| 50 |
-
from sklearn.linear_model import LogisticRegression
|
| 51 |
-
classifier = LogisticRegression(random_state = 0)
|
| 52 |
-
classifier.fit(X_train, y_train)
|
| 53 |
-
|
| 54 |
-
"""## Predicting a new result"""
|
| 55 |
-
|
| 56 |
-
print(classifier.predict(sc.transform([[30,87000]])))
|
| 57 |
-
|
| 58 |
-
"""## Predicting the Test set results"""
|
| 59 |
-
|
| 60 |
-
y_pred = classifier.predict(X_test)
|
| 61 |
-
print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1))
|
| 62 |
-
|
| 63 |
-
"""## Making the Confusion Matrix"""
|
| 64 |
-
|
| 65 |
-
from sklearn.metrics import confusion_matrix, accuracy_score
|
| 66 |
-
cm = confusion_matrix(y_test, y_pred)
|
| 67 |
-
print(cm)
|
| 68 |
-
accuracy_score(y_test, y_pred)
|
| 69 |
-
|
| 70 |
-
"""## Visualising the Training set results"""
|
| 71 |
-
|
| 72 |
-
from matplotlib.colors import ListedColormap
|
| 73 |
-
X_set, y_set = sc.inverse_transform(X_train), y_train
|
| 74 |
-
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25),
|
| 75 |
-
np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25))
|
| 76 |
-
plt.contourf(X1, X2, classifier.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape),
|
| 77 |
-
alpha = 0.75, cmap = ListedColormap(('salmon', 'dodgerblue')))
|
| 78 |
-
plt.xlim(X1.min(), X1.max())
|
| 79 |
-
plt.ylim(X2.min(), X2.max())
|
| 80 |
-
for i, j in enumerate(np.unique(y_set)):
|
| 81 |
-
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('salmon', 'dodgerblue'))(i), label = j)
|
| 82 |
-
plt.title('Logistic Regression (Training set)')
|
| 83 |
-
plt.xlabel('Age')
|
| 84 |
-
plt.ylabel('Estimated Salary')
|
| 85 |
-
plt.legend()
|
| 86 |
-
plt.show()
|
| 87 |
-
|
| 88 |
-
"""## Visualising the Test set results"""
|
| 89 |
-
|
| 90 |
-
from matplotlib.colors import ListedColormap
|
| 91 |
-
X_set, y_set = sc.inverse_transform(X_test), y_test
|
| 92 |
-
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25),
|
| 93 |
-
np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25))
|
| 94 |
-
plt.contourf(X1, X2, classifier.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape),
|
| 95 |
-
alpha = 0.75, cmap = ListedColormap(('salmon', 'dodgerblue')))
|
| 96 |
-
plt.xlim(X1.min(), X1.max())
|
| 97 |
-
plt.ylim(X2.min(), X2.max())
|
| 98 |
-
for i, j in enumerate(np.unique(y_set)):
|
| 99 |
-
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('salmon', 'dodgerblue'))(i), label = j)
|
| 100 |
-
plt.title('Logistic Regression (Test set)')
|
| 101 |
-
plt.xlabel('Age')
|
| 102 |
-
plt.ylabel('Estimated Salary')
|
| 103 |
-
plt.legend()
|
| 104 |
-
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|