SagarManchekar commited on
Commit
f376286
·
1 Parent(s): f0fd71d

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -104
app.py DELETED
@@ -1,104 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """logistic_regression.ipynb
3
-
4
- Automatically generated by Colaboratory.
5
-
6
- Original file is located at
7
- https://colab.research.google.com/drive/1-Slk6y5-E3eUnmM4vjtoRrGMoIKvD0hU
8
-
9
- # Logistic Regression
10
-
11
- ## Importing the libraries
12
- """
13
-
14
- import numpy as np
15
- import matplotlib.pyplot as plt
16
- import pandas as pd
17
-
18
- """## Importing the dataset"""
19
-
20
- dataset = pd.read_csv('Social_Network_Ads.csv')
21
- X = dataset.iloc[:, :-1].values
22
- y = dataset.iloc[:, -1].values
23
-
24
- """## Splitting the dataset into the Training set and Test set"""
25
-
26
- from sklearn.model_selection import train_test_split
27
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
28
-
29
- print(X_train)
30
-
31
- print(y_train)
32
-
33
- print(X_test)
34
-
35
- print(y_test)
36
-
37
- """## Feature Scaling"""
38
-
39
- from sklearn.preprocessing import StandardScaler
40
- sc = StandardScaler()
41
- X_train = sc.fit_transform(X_train)
42
- X_test = sc.transform(X_test)
43
-
44
- print(X_train)
45
-
46
- print(X_test)
47
-
48
- """## Training the Logistic Regression model on the Training set"""
49
-
50
- from sklearn.linear_model import LogisticRegression
51
- classifier = LogisticRegression(random_state = 0)
52
- classifier.fit(X_train, y_train)
53
-
54
- """## Predicting a new result"""
55
-
56
- print(classifier.predict(sc.transform([[30,87000]])))
57
-
58
- """## Predicting the Test set results"""
59
-
60
- y_pred = classifier.predict(X_test)
61
- print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1))
62
-
63
- """## Making the Confusion Matrix"""
64
-
65
- from sklearn.metrics import confusion_matrix, accuracy_score
66
- cm = confusion_matrix(y_test, y_pred)
67
- print(cm)
68
- accuracy_score(y_test, y_pred)
69
-
70
- """## Visualising the Training set results"""
71
-
72
- from matplotlib.colors import ListedColormap
73
- X_set, y_set = sc.inverse_transform(X_train), y_train
74
- X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25),
75
- np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25))
76
- plt.contourf(X1, X2, classifier.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape),
77
- alpha = 0.75, cmap = ListedColormap(('salmon', 'dodgerblue')))
78
- plt.xlim(X1.min(), X1.max())
79
- plt.ylim(X2.min(), X2.max())
80
- for i, j in enumerate(np.unique(y_set)):
81
- plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('salmon', 'dodgerblue'))(i), label = j)
82
- plt.title('Logistic Regression (Training set)')
83
- plt.xlabel('Age')
84
- plt.ylabel('Estimated Salary')
85
- plt.legend()
86
- plt.show()
87
-
88
- """## Visualising the Test set results"""
89
-
90
- from matplotlib.colors import ListedColormap
91
- X_set, y_set = sc.inverse_transform(X_test), y_test
92
- X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25),
93
- np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25))
94
- plt.contourf(X1, X2, classifier.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape),
95
- alpha = 0.75, cmap = ListedColormap(('salmon', 'dodgerblue')))
96
- plt.xlim(X1.min(), X1.max())
97
- plt.ylim(X2.min(), X2.max())
98
- for i, j in enumerate(np.unique(y_set)):
99
- plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('salmon', 'dodgerblue'))(i), label = j)
100
- plt.title('Logistic Regression (Test set)')
101
- plt.xlabel('Age')
102
- plt.ylabel('Estimated Salary')
103
- plt.legend()
104
- plt.show()