Spaces:
Running
Running
File size: 1,663 Bytes
159fb0f 6f7f6f4 6d4bbd5 0e3827e 52af948 8ee8c7a e630870 159fb0f 75a0432 eb16681 5b3415e e22f878 74a719c 5b3415e b3a3a31 2e4ea84 5b3415e e22f878 ea1b8bd bc7c11f 786704b e22f878 a163b32 c2f9e23 bae418a c2f9e23 2cd30e9 0e3827e 159fb0f 0e3827e eb16681 576c5e4 74a719c 26a7280 159fb0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.models import load_model
import tensorflow_addons as tfa
import os
import numpy as np
# labels= {'Burger King': 0, 'KFC': 1,'McDonalds': 2,'Other': 3,'Starbucks': 4,'Subway': 5}
HEIGHT,WIDTH=224,224
NUM_CLASSES=6
model=load_model('best_model2.h5')
# def classify_image(inp):
# np.random.seed(143)
# inp = inp.reshape((-1, HEIGHT,WIDTH, 3))
# inp = tf.keras.applications.nasnet.preprocess_input(inp)
# prediction = model.predict(inp)
# ###label = dict((v,k) for k,v in labels.items())
# predicted_class_indices=np.argmax(prediction,axis=1)
# result = {}
# for i in range(len(predicted_class_indices)):
# if predicted_class_indices[i] < NUM_CLASSES:
# result[labels[predicted_class_indices[i]]]= float(predicted_class_indices[i])
# return result
def classify_image(inp):
np.random.seed(143)
labels = {'Burger King': 1, 'KFC': 0, 'McDonalds': 2, 'Other': 3, 'Starbucks': 4, 'Subway': 5}
NUM_CLASSES = 6
inp = inp.reshape((-1, HEIGHT, WIDTH, 3))
inp = tf.keras.applications.nasnet.preprocess_input(inp)
prediction = model.predict(inp)
predicted_class_indices = np.argmax(prediction, axis=1)
label_order = ["Burger King", "KFC", "McDonalds", "Other", "Starbucks", "Subway"]
result = {label: float(f"{prediction[0][labels[label]]:.6f}") for label in label_order}
return result
image = gr.Image(shape=(HEIGHT,WIDTH),label='Input')
label = gr.Label(num_top_classes=4)
gr.Interface(fn=classify_image, inputs=image, outputs=label, title='Brand Logo Detection').launch(debug=False)
|