Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,18 +14,35 @@ NUM_CLASSES=6
|
|
| 14 |
|
| 15 |
model=load_model('best_model.h5')
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
def classify_image(inp):
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
|
|
|
|
| 14 |
|
| 15 |
model=load_model('best_model.h5')
|
| 16 |
|
| 17 |
+
# def classify_image(inp):
|
| 18 |
+
# np.random.seed(143)
|
| 19 |
+
# inp = inp.reshape((-1, HEIGHT,WIDTH, 3))
|
| 20 |
+
# inp = tf.keras.applications.nasnet.preprocess_input(inp)
|
| 21 |
+
# prediction = model.predict(inp)
|
| 22 |
+
# ###label = dict((v,k) for k,v in labels.items())
|
| 23 |
+
# predicted_class_indices=np.argmax(prediction,axis=1)
|
| 24 |
+
# result = {}
|
| 25 |
+
# for i in range(len(predicted_class_indices)):
|
| 26 |
+
# if predicted_class_indices[i] < NUM_CLASSES:
|
| 27 |
+
# result[labels[predicted_class_indices[i]]]= float(predicted_class_indices[i])
|
| 28 |
+
# return result
|
| 29 |
+
|
| 30 |
+
|
| 31 |
def classify_image(inp):
|
| 32 |
+
np.random.seed(143)
|
| 33 |
+
inp = inp.reshape((-1, HEIGHT, WIDTH, 3))
|
| 34 |
+
inp = tf.keras.applications.nasnet.preprocess_input(inp)
|
| 35 |
+
prediction = model.predict(inp)
|
| 36 |
+
predicted_class_indices = np.argmax(prediction, axis=1)
|
| 37 |
+
result = {}
|
| 38 |
+
for i in range(len(predicted_class_indices)):
|
| 39 |
+
if predicted_class_indices[i] < NUM_CLASSES:
|
| 40 |
+
try:
|
| 41 |
+
label = labels[predicted_class_indices[i]]
|
| 42 |
+
result[label] = float(predicted_class_indices[i])
|
| 43 |
+
except KeyError:
|
| 44 |
+
print(f"KeyError: Label not found for index {predicted_class_indices[i]}")
|
| 45 |
+
return result
|
| 46 |
|
| 47 |
|
| 48 |
|