.idea/workspace.xml DELETED
@@ -1,58 +0,0 @@
1
- <?xml version="1.0" encoding="UTF-8"?>
2
- <project version="4">
3
- <component name="ChangeListManager">
4
- <list default="true" id="60da6b73-38f4-48aa-bd78-5731d35b3a7c" name="Changes" comment="" />
5
- <option name="SHOW_DIALOG" value="false" />
6
- <option name="HIGHLIGHT_CONFLICTS" value="true" />
7
- <option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
8
- <option name="LAST_RESOLUTION" value="IGNORE" />
9
- </component>
10
- <component name="Git.Settings">
11
- <option name="RECENT_GIT_ROOT_PATH" value="$PROJECT_DIR$" />
12
- </component>
13
- <component name="MarkdownSettingsMigration">
14
- <option name="stateVersion" value="1" />
15
- </component>
16
- <component name="ProjectColorInfo">{
17
- &quot;customColor&quot;: &quot;&quot;,
18
- &quot;associatedIndex&quot;: 2
19
- }</component>
20
- <component name="ProjectId" id="2zGmpeKAt5GZlNtHRIRD45uRoxd" />
21
- <component name="ProjectViewState">
22
- <option name="hideEmptyMiddlePackages" value="true" />
23
- <option name="showLibraryContents" value="true" />
24
- </component>
25
- <component name="PropertiesComponent"><![CDATA[{
26
- "keyToString": {
27
- "RunOnceActivity.OpenProjectViewOnStart": "true",
28
- "RunOnceActivity.ShowReadmeOnStart": "true",
29
- "git-widget-placeholder": "pr/18",
30
- "last_opened_file_path": "E:/pythonProject/ChineseSafe-Benchmark",
31
- "nodejs_package_manager_path": "npm",
32
- "vue.rearranger.settings.migration": "true"
33
- }
34
- }]]></component>
35
- <component name="SharedIndexes">
36
- <attachedChunks>
37
- <set>
38
- <option value="bundled-python-sdk-67fca87a943a-c986f194a52a-com.jetbrains.pycharm.pro.sharedIndexes.bundled-PY-233.11799.259" />
39
- </set>
40
- </attachedChunks>
41
- </component>
42
- <component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="application-level" UseSingleDictionary="true" transferred="true" />
43
- <component name="TaskManager">
44
- <task active="true" id="Default" summary="Default task">
45
- <changelist id="60da6b73-38f4-48aa-bd78-5731d35b3a7c" name="Changes" comment="" />
46
- <created>1751365967779</created>
47
- <option name="number" value="Default" />
48
- <option name="presentableId" value="Default" />
49
- <updated>1751365967779</updated>
50
- <workItem from="1751365968934" duration="39000" />
51
- <workItem from="1751366116696" duration="54000" />
52
- </task>
53
- <servers />
54
- </component>
55
- <component name="TypeScriptGeneratedFilesManager">
56
- <option name="version" value="3" />
57
- </component>
58
- </project>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -6,16 +6,15 @@ import pandas as pd
6
  from assets.text import INTRODUCTION_TEXT, METRICS_TEXT, EVALUTION_TEXT, ACKNOWLEDGEMENTS_TEXT, REFERENCE_TEXT
7
 
8
 
9
- ORIGINAL_DF = pd.read_csv("./data/chinese_benchmark_gen.csv", encoding='utf-8') # space separated values
10
- ORIGINAL_DF_PER = pd.read_csv("./data/chinese_benchmark_per.csv", encoding='utf-8') #
11
 
12
- ORIGINAL_DF_SUB_GEN = pd.read_csv("./data/subclass_gen.csv", encoding='utf-8') #
13
- ORIGINAL_DF_SUB_PER = pd.read_csv("./data/subclass_per.csv", encoding='utf-8')
14
-
15
- ORIGINAL_DF_NEW = pd.read_csv("./data/ChineseGuardBench.csv", encoding='utf-8') # new table
16
 
17
  METRICS = ["Accuracy", "Precision_Unsafe", "Recall_Unsafe", "Precision_Safe", "Recall_Safe", "None"]
18
 
 
19
  SUBCLASS = ["Discrimination", "Variant", "Psychology", "Politics", "Eroticism", "Vulgarity", "Property", "Injury", "Criminality", "Ethics"]
20
 
21
  #SPLITS = ["Overall", "Subclass"]
@@ -27,10 +26,9 @@ CLASSIFICATION = {
27
  "~30B",
28
  "10B~20B",
29
  "5B~10B",
30
- "1B~5B",
31
  "API",
32
  ]
33
-
34
  }
35
 
36
 
@@ -38,17 +36,17 @@ CLASSIFICATION = {
38
 
39
  _BIBTEX = """
40
  @misc{zhang2024chinesesafechinesebenchmarkevaluating,
41
- title={ChineseSafe: A Chinese Benchmark for Evaluating Safety in Large Language Models},
42
  author={Hengxiang Zhang and Hongfu Gao and Qiang Hu and Guanhua Chen and Lili Yang and Bingyi Jing and Hongxin Wei and Bing Wang and Haifeng Bai and Lei Yang},
43
  year={2024},
44
  eprint={2410.18491},
45
  archivePrefix={arXiv},
46
  primaryClass={cs.CL},
47
- url={https://arxiv.org/abs/2410.18491},
48
  }
49
  """
50
 
51
- _LAST_UPDATED = "July 28, 2025"
52
 
53
  banner_url = "./assets/logo.png"
54
  _BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 300px; max-width: 600px;"> </div>' # noqa
@@ -64,31 +62,18 @@ def format_csv_numbers(text):
64
 
65
  def format_csv_numbers_second(text):
66
  return text.split()
67
-
68
-
69
  def format_number(x):
70
  return float(f"{x:.3}")
71
 
72
 
73
- def get_dataset_new_csv(
74
- model_size: List[str],
75
- ):
76
- df = ORIGINAL_DF_NEW[ORIGINAL_DF_NEW['Size'].isin(model_size)]
77
- df = df.drop(columns="Size")
78
-
79
- leaderboard_table = gr.components.Dataframe(
80
- value=df,
81
- interactive=False,
82
- visible=True,
83
- )
84
- return leaderboard_table
85
-
86
  def get_dataset_csv(
87
  model_size: List[str],
88
  ):
89
  df = ORIGINAL_DF[ORIGINAL_DF['Size'].isin(model_size)]
90
  df = df.drop(columns="Size")
91
-
92
  leaderboard_table = gr.components.Dataframe(
93
  value=df,
94
  interactive=False,
@@ -116,11 +101,11 @@ def get_dataset_csv_sub_gen(
116
  ):
117
  df = ORIGINAL_DF_SUB_GEN[ORIGINAL_DF_SUB_GEN['Size'].isin(model_size)]
118
  df = df.drop(columns="Size")
119
-
120
  # get subclass
121
  subclass_choice_label = ["Model", subclass_choice+"_Accuracy", subclass_choice+"_Precision", subclass_choice+"_Recall"]
122
  df = df[subclass_choice_label]
123
-
124
  leaderboard_table = gr.components.Dataframe(
125
  value=df,
126
  interactive=False,
@@ -135,11 +120,11 @@ def get_dataset_csv_sub_per(
135
  ):
136
  df = ORIGINAL_DF_SUB_PER[ORIGINAL_DF_SUB_PER['Size'].isin(model_size)]
137
  df = df.drop(columns="Size")
138
-
139
  # get subclass
140
  subclass_choice_label = ["Model", subclass_choice+"_Accuracy", subclass_choice+"_Precision", subclass_choice+"_Recall"]
141
  df = df[subclass_choice_label]
142
-
143
  leaderboard_table = gr.components.Dataframe(
144
  value=df,
145
  interactive=False,
@@ -158,15 +143,7 @@ def get_dataset_classfier_gen(
158
  subclass_choice = main_choice
159
  leaderboard_table = get_dataset_csv_sub_gen(model_size, subclass_choice)
160
  return leaderboard_table
161
-
162
- def get_ChineseGuardBench(
163
- model_size: List[str],
164
- main_choice: List[str],
165
- ):
166
- leaderboard_table = get_dataset_new_csv(model_size)
167
- return leaderboard_table
168
-
169
-
170
  def get_dataset_classfier_per(
171
  model_size: List[str],
172
  main_choice: List[str],
@@ -187,10 +164,10 @@ with gr.Blocks() as demo:
187
 
188
  with gr.Row():
189
  gr.Markdown(METRICS_TEXT, elem_classes="markdown-text")
190
-
191
  with gr.Row():
192
  gr.Markdown(EVALUTION_TEXT, elem_classes="markdown-text")
193
-
194
  with gr.Row():
195
  with gr.Column(scale=0.8):
196
  main_choice = gr.Dropdown(
@@ -199,8 +176,8 @@ with gr.Blocks() as demo:
199
  label="Type",
200
  info="Please choose the type to display.",
201
  )
202
-
203
- with gr.Column(scale=10):
204
  model_choice = gr.CheckboxGroup(
205
  choices=CLASSIFICATION["model_size"],
206
  value=CLASSIFICATION["model_size"], # all be choosed
@@ -211,29 +188,24 @@ with gr.Blocks() as demo:
211
  #👉 this part is for csv table generatived
212
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
213
  # ----------------- modify text -----------------
214
-
215
- with gr.TabItem("🏅 Generation", elem_id="od-benchmark-tab-table", id=5):
216
  dataframe_all_gen = gr.components.Dataframe(
217
  elem_id="leaderboard-table",
218
  )
219
-
220
- with gr.TabItem("🏅 Perplexity", elem_id="od-benchmark-tab-table", id=6):
221
- dataframe_all_per = gr.components.Dataframe(
222
- elem_id="leaderboard-table",
223
- )
224
 
225
- with gr.TabItem("🏅 NEW", elem_id="od-benchmark-tab-table", id=7):
226
- dataframe_all_guardbench = gr.components.Dataframe(
227
  elem_id="leaderboard-table",
228
  )
229
 
230
  # ----------------- modify text -----------------
231
  with gr.Row():
232
  gr.Markdown(ACKNOWLEDGEMENTS_TEXT, elem_classes="markdown-text")
233
-
234
  with gr.Row():
235
  gr.Markdown(REFERENCE_TEXT, elem_classes="markdown-text")
236
-
237
  # 👉 this part is for citation
238
  with gr.Row():
239
  with gr.Accordion("📙 Citation", open=True):
@@ -244,18 +216,18 @@ with gr.Blocks() as demo:
244
  elem_id="citation-button",
245
  show_copy_button=True
246
  )
247
-
248
  gr.Markdown(f"Last updated on **{_LAST_UPDATED}**", elem_classes="markdown-text")
249
-
250
  # --------------------------- all --------------------------------
251
  # this is all result Perplexity
252
-
253
  main_choice.change(
254
  get_dataset_classfier_per,
255
  inputs=[model_choice, main_choice],
256
  outputs=dataframe_all_per,
257
  )
258
-
259
  model_choice.change(
260
  get_dataset_classfier_per,
261
  inputs=[model_choice, main_choice],
@@ -267,45 +239,26 @@ with gr.Blocks() as demo:
267
  inputs=[model_choice, main_choice],
268
  outputs=dataframe_all_per,
269
  )
270
-
271
  # this is all result generatived
272
  main_choice.change(
273
  get_dataset_classfier_gen,
274
  inputs=[model_choice, main_choice],
275
  outputs=dataframe_all_gen,
276
  )
277
-
278
  model_choice.change(
279
  get_dataset_classfier_gen,
280
  inputs=[model_choice, main_choice],
281
  outputs=dataframe_all_gen,
282
  )
283
-
284
  demo.load(
285
  fn=get_dataset_classfier_gen,
286
  inputs=[model_choice, main_choice],
287
  outputs=dataframe_all_gen,
288
  )
289
-
290
- # this is new results for ChineseGuardBench
291
 
292
- # main_choice.change(
293
- # get_ChineseGuardBench,
294
- # inputs=[model_choice, main_choice],
295
- # outputs=dataframe_all_guardbench,
296
- # )
297
-
298
- model_choice.change(
299
- get_ChineseGuardBench,
300
- inputs=[model_choice, main_choice],
301
- outputs=dataframe_all_guardbench,
302
- )
303
-
304
- demo.load(
305
- fn=get_ChineseGuardBench,
306
- inputs=[model_choice, main_choice],
307
- outputs=dataframe_all_guardbench,
308
- )
309
-
310
  demo.launch(share=True)
311
 
 
6
  from assets.text import INTRODUCTION_TEXT, METRICS_TEXT, EVALUTION_TEXT, ACKNOWLEDGEMENTS_TEXT, REFERENCE_TEXT
7
 
8
 
9
+ ORIGINAL_DF = pd.read_csv("./data/chinese_benchmark_gen.csv", sep='\t') # space separated values
10
+ ORIGINAL_DF_PER = pd.read_csv("./data/chinese_benchmark_per.csv", sep='\t') #
11
 
12
+ ORIGINAL_DF_SUB_GEN = pd.read_csv("./data/subclass_gen.csv", sep=',') #
13
+ ORIGINAL_DF_SUB_PER = pd.read_csv("./data/subclass_per.csv", sep=',')
 
 
14
 
15
  METRICS = ["Accuracy", "Precision_Unsafe", "Recall_Unsafe", "Precision_Safe", "Recall_Safe", "None"]
16
 
17
+
18
  SUBCLASS = ["Discrimination", "Variant", "Psychology", "Politics", "Eroticism", "Vulgarity", "Property", "Injury", "Criminality", "Ethics"]
19
 
20
  #SPLITS = ["Overall", "Subclass"]
 
26
  "~30B",
27
  "10B~20B",
28
  "5B~10B",
 
29
  "API",
30
  ]
31
+
32
  }
33
 
34
 
 
36
 
37
  _BIBTEX = """
38
  @misc{zhang2024chinesesafechinesebenchmarkevaluating,
39
+ title={ChineseSafe: A Chinese Benchmark for Evaluating Safety in Large Language Models},
40
  author={Hengxiang Zhang and Hongfu Gao and Qiang Hu and Guanhua Chen and Lili Yang and Bingyi Jing and Hongxin Wei and Bing Wang and Haifeng Bai and Lei Yang},
41
  year={2024},
42
  eprint={2410.18491},
43
  archivePrefix={arXiv},
44
  primaryClass={cs.CL},
45
+ url={https://arxiv.org/abs/2410.18491},
46
  }
47
  """
48
 
49
+ _LAST_UPDATED = "April 13, 2025"
50
 
51
  banner_url = "./assets/logo.png"
52
  _BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 300px; max-width: 600px;"> </div>' # noqa
 
62
 
63
  def format_csv_numbers_second(text):
64
  return text.split()
65
+
66
+
67
  def format_number(x):
68
  return float(f"{x:.3}")
69
 
70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  def get_dataset_csv(
72
  model_size: List[str],
73
  ):
74
  df = ORIGINAL_DF[ORIGINAL_DF['Size'].isin(model_size)]
75
  df = df.drop(columns="Size")
76
+
77
  leaderboard_table = gr.components.Dataframe(
78
  value=df,
79
  interactive=False,
 
101
  ):
102
  df = ORIGINAL_DF_SUB_GEN[ORIGINAL_DF_SUB_GEN['Size'].isin(model_size)]
103
  df = df.drop(columns="Size")
104
+
105
  # get subclass
106
  subclass_choice_label = ["Model", subclass_choice+"_Accuracy", subclass_choice+"_Precision", subclass_choice+"_Recall"]
107
  df = df[subclass_choice_label]
108
+
109
  leaderboard_table = gr.components.Dataframe(
110
  value=df,
111
  interactive=False,
 
120
  ):
121
  df = ORIGINAL_DF_SUB_PER[ORIGINAL_DF_SUB_PER['Size'].isin(model_size)]
122
  df = df.drop(columns="Size")
123
+
124
  # get subclass
125
  subclass_choice_label = ["Model", subclass_choice+"_Accuracy", subclass_choice+"_Precision", subclass_choice+"_Recall"]
126
  df = df[subclass_choice_label]
127
+
128
  leaderboard_table = gr.components.Dataframe(
129
  value=df,
130
  interactive=False,
 
143
  subclass_choice = main_choice
144
  leaderboard_table = get_dataset_csv_sub_gen(model_size, subclass_choice)
145
  return leaderboard_table
146
+
 
 
 
 
 
 
 
 
147
  def get_dataset_classfier_per(
148
  model_size: List[str],
149
  main_choice: List[str],
 
164
 
165
  with gr.Row():
166
  gr.Markdown(METRICS_TEXT, elem_classes="markdown-text")
167
+
168
  with gr.Row():
169
  gr.Markdown(EVALUTION_TEXT, elem_classes="markdown-text")
170
+
171
  with gr.Row():
172
  with gr.Column(scale=0.8):
173
  main_choice = gr.Dropdown(
 
176
  label="Type",
177
  info="Please choose the type to display.",
178
  )
179
+
180
+ with gr.Column(scale=10):
181
  model_choice = gr.CheckboxGroup(
182
  choices=CLASSIFICATION["model_size"],
183
  value=CLASSIFICATION["model_size"], # all be choosed
 
188
  #👉 this part is for csv table generatived
189
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
190
  # ----------------- modify text -----------------
191
+
192
+ with gr.TabItem("🏅 Generation", elem_id="od-benchmark-tab-table", id=6):
193
  dataframe_all_gen = gr.components.Dataframe(
194
  elem_id="leaderboard-table",
195
  )
 
 
 
 
 
196
 
197
+ with gr.TabItem("🏅 Perplexity", elem_id="od-benchmark-tab-table", id=5):
198
+ dataframe_all_per = gr.components.Dataframe(
199
  elem_id="leaderboard-table",
200
  )
201
 
202
  # ----------------- modify text -----------------
203
  with gr.Row():
204
  gr.Markdown(ACKNOWLEDGEMENTS_TEXT, elem_classes="markdown-text")
205
+
206
  with gr.Row():
207
  gr.Markdown(REFERENCE_TEXT, elem_classes="markdown-text")
208
+
209
  # 👉 this part is for citation
210
  with gr.Row():
211
  with gr.Accordion("📙 Citation", open=True):
 
216
  elem_id="citation-button",
217
  show_copy_button=True
218
  )
219
+
220
  gr.Markdown(f"Last updated on **{_LAST_UPDATED}**", elem_classes="markdown-text")
221
+
222
  # --------------------------- all --------------------------------
223
  # this is all result Perplexity
224
+
225
  main_choice.change(
226
  get_dataset_classfier_per,
227
  inputs=[model_choice, main_choice],
228
  outputs=dataframe_all_per,
229
  )
230
+
231
  model_choice.change(
232
  get_dataset_classfier_per,
233
  inputs=[model_choice, main_choice],
 
239
  inputs=[model_choice, main_choice],
240
  outputs=dataframe_all_per,
241
  )
242
+
243
  # this is all result generatived
244
  main_choice.change(
245
  get_dataset_classfier_gen,
246
  inputs=[model_choice, main_choice],
247
  outputs=dataframe_all_gen,
248
  )
249
+
250
  model_choice.change(
251
  get_dataset_classfier_gen,
252
  inputs=[model_choice, main_choice],
253
  outputs=dataframe_all_gen,
254
  )
255
+
256
  demo.load(
257
  fn=get_dataset_classfier_gen,
258
  inputs=[model_choice, main_choice],
259
  outputs=dataframe_all_gen,
260
  )
 
 
261
 
262
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263
  demo.launch(share=True)
264
 
assets/text.py CHANGED
@@ -34,13 +34,13 @@ EVALUTION_TEXT= """
34
  <span style="font-size:16px; font-family: 'Times New Roman', serif">
35
  We evaluate the models using two methods: perplexity(multiple choice) and generation.
36
  For perplexity, we select the label which is the lowest perplexity as the predicted results.
37
- For generation, we use the content generated by the model to make prediction.
38
- In the "New" table, we present evaluation results for generation on a meticulously curated new benchmark, with details of its processing to be introduced later.
39
- The following are the results of the evaluation.👇👇👇
40
  </span> <br><br>
41
 
42
 
43
  """ # noqa
 
44
  REFERENCE_TEXT = """
45
  # References
46
  <span style="font-size:16px; font-family: 'Times New Roman', serif">
 
34
  <span style="font-size:16px; font-family: 'Times New Roman', serif">
35
  We evaluate the models using two methods: perplexity(multiple choice) and generation.
36
  For perplexity, we select the label which is the lowest perplexity as the predicted results.
37
+ For generation, we use the content generated by the model to make prediction.
38
+ The following are the results of the evaluation. 👇👇👇
 
39
  </span> <br><br>
40
 
41
 
42
  """ # noqa
43
+
44
  REFERENCE_TEXT = """
45
  # References
46
  <span style="font-size:16px; font-family: 'Times New Roman', serif">
changelog.md CHANGED
@@ -1,6 +1,5 @@
1
  # CHANGELOG
2
 
3
-
4
  ### 2024-7-16
5
  version: v1.0.0
6
 
@@ -67,14 +66,4 @@ version: v1.0.6
67
  - Deepseek-chat-v3-0324
68
  - Qwen3
69
  - Gemma-3
70
- - OpenThinker2
71
-
72
- ### 2025-7-29
73
- version: v1.0.7
74
-
75
- changed:
76
- - [1]feat: Update the two models required by Deepexi.
77
- - Deepexi-Guard-3B
78
- - Qwen2.5-3B-Instruct
79
-
80
- - [2]feat: Update a new table ChineseGuardBench required by Deepxi.
 
1
  # CHANGELOG
2
 
 
3
  ### 2024-7-16
4
  version: v1.0.0
5
 
 
66
  - Deepseek-chat-v3-0324
67
  - Qwen3
68
  - Gemma-3
69
+ - OpenThinker2
 
 
 
 
 
 
 
 
 
 
data/ChineseGuardBench.csv DELETED
@@ -1,33 +0,0 @@
1
- Model,Size,F1,Accuracy,Precision,Recall,FPR,FNR
2
- Deepexi-Guard-3B,1B~5B,89.63 ,89.72 ,85.53 ,94.15 ,14.24 ,5.85
3
- Qwen3-32B,~30B,88.54 ,89.25 ,89.08 ,88.02 ,9.64 ,11.98
4
- Qwen3-235B-A22B,>65B,87.92 ,88.96 ,90.86 ,85.17 ,7.66 ,14.83
5
- Qwen3-235B-A22B-Instruct-2507,>65B,87.81 ,89.13 ,93.27 ,82.96 ,5.35 ,17.04
6
- GLM-Z1-9B-0414,5B~10B,87.36 ,88.03 ,87.11 ,87.61 ,11.59 ,12.39
7
- Qwen2.5-72B-Instruct,>65B,86.81 ,88.27 ,92.50 ,81.79 ,5.93 ,18.21
8
- QwQ-32B,~30B,86.80 ,88.35 ,93.33 ,81.12 ,5.18 ,18.88
9
- Phi-4,10B~20B,85.95 ,86.88 ,86.90 ,85.02 ,11.45 ,14.98
10
- Gemma-3-27B-it,~30B,85.29 ,86.78 ,89.83 ,81.19 ,8.22 ,18.81
11
- DeepSeek-R1-0528,>65B,85.24 ,87.47 ,96.02 ,76.63 ,2.84 ,23.37
12
- Mistral-Small-3.2-24B-Instruct,~30B,85.07 ,87.03 ,93.14 ,78.29 ,5.15 ,21.71
13
- GLM-4-9B-chat,5B~10B,84.85 ,86.27 ,88.47 ,81.52 ,9.49 ,18.48
14
- MD-Judge-v0_2-internlm2_7B,5B~10B,84.63 ,85.88 ,87.03 ,82.37 ,10.98 ,17.63
15
- DeepSeek-R1-Distill-Qwen-32B,~30B,84.55 ,86.64 ,93.05 ,77.47 ,5.17 ,22.53
16
- Hunyuan-A13B-Instruct,>65B,84.32 ,86.21 ,90.97 ,78.58 ,6.98 ,21.42
17
- Moonlight-16B-A3B-Instruct,10B~20B,84.21 ,84.35 ,80.41 ,88.38 ,19.25 ,11.62
18
- GLM-Z1-32B-0414,~30B,83.40 ,85.75 ,92.63 ,75.85 ,5.40 ,24.15
19
- Qwen3-8B,5B~10B,83.05 ,85.51 ,92.69 ,75.23 ,5.30 ,24.77
20
- Qwen2.5-7B-Instruct,5B~10B,82.96 ,84.99 ,89.41 ,77.37 ,8.20 ,22.63
21
- Qwen2.5-1.5B-Instruct,1B~5B,79.48 ,77.08 ,68.83 ,94.03 ,38.07 ,5.97
22
- shieldgemma-2B,1B~5B,79.19 ,79.63 ,76.50 ,82.06 ,22.54 ,17.94
23
- Qwen2.5-3B-Instruct,1B~5B,79.05 ,77.57 ,70.69 ,89.66 ,33.25 ,10.34
24
- SHTEC_safety_fence_model_7B,5B~10B,78.44 ,82.48 ,93.54 ,67.54 ,4.17 ,32.46
25
- Qwen3-4B,1B~5B,78.16 ,82.50 ,95.12 ,66.33 ,3.04 ,33.67
26
- SmolLM3-3B,1B~5B,76.10 ,79.19 ,83.09 ,70.19 ,12.77 ,29.81
27
- ERNIE-4.5-21B-A3B-Paddle,~20B,75.21 ,80.58 ,94.58 ,62.42 ,3.20 ,37.58
28
- Qwen3-1.7B,1B~5B,74.46 ,79.34 ,89.36 ,63.82 ,6.79 ,36.18
29
- internlm2_5-7B-chat,5B~10B,71.52 ,78.49 ,95.34 ,57.22 ,2.50 ,42.78
30
- Llama-Guard-4-12B,10B~20B,65.66 ,74.64 ,90.99 ,51.36 ,4.54 ,48.64
31
- Llama-Guard-3-8B,5B~10B,59.33 ,72.44 ,97.80 ,42.58 ,0.86 ,57.42
32
- DeepSeek-R1-Distill-Qwen-7B,5B~10B,45.27 ,65.53 ,90.36 ,30.20 ,2.88 ,69.80
33
- Gemma-3n-E4B-it,5B~10B,44.05 ,64.88 ,88.80 ,29.29 ,3.30 ,70.71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/chinese_benchmark_gen.csv CHANGED
@@ -7,8 +7,6 @@ Gemini-2.5-flash-preview-05-20,API,71.27/0.27,73.40/0.23,70.16/0.71,69.17/0.53,7
7
  Llama-4-maverick,API,75.02/0.03,62.35/0.10,83.53/0.03,87.71/0.04,69.96/0.04
8
  Gemini-2.0-flash-001,API,52.04/0.61,0.95/0.05,69.46/0.38,99.60/0.03,51.93/0.62
9
  Deepseek-chat-v3-0324,API,66.00/0.11,45.08/0.11,77.52/0.19,86.93/0.11,61.28/0.08
10
- Deepexi-Guard-3B,1B~5B,78.26/0.0,89.35/0.0,64.16/0.0,72.04/0.0,92.35/0.0
11
- Qwen2.5-3B-Instruct,1B~5B,71.81/0.0,70.36/0.0,75.36/0.0,73.47/0.0,68.25/0.0
12
  Phi-3-small-8k-instruct,5B~10B,72.73/0.47,73.67/0.63,71.12/0.49,71.85/0.35,74.36/0.59
13
  Gemma-1.1-7B-it,5B~10B,71.70/0.26,68.66/0.37,80.11/0.05,76.00/0.09,63.26/0.47
14
  DeepSeek-LLM-7B-Chat,5B~10B,71.63/0.17,69.50/0.15,77.33/0.67,74.33/0.41,65.90/0.38
 
7
  Llama-4-maverick,API,75.02/0.03,62.35/0.10,83.53/0.03,87.71/0.04,69.96/0.04
8
  Gemini-2.0-flash-001,API,52.04/0.61,0.95/0.05,69.46/0.38,99.60/0.03,51.93/0.62
9
  Deepseek-chat-v3-0324,API,66.00/0.11,45.08/0.11,77.52/0.19,86.93/0.11,61.28/0.08
 
 
10
  Phi-3-small-8k-instruct,5B~10B,72.73/0.47,73.67/0.63,71.12/0.49,71.85/0.35,74.36/0.59
11
  Gemma-1.1-7B-it,5B~10B,71.70/0.26,68.66/0.37,80.11/0.05,76.00/0.09,63.26/0.47
12
  DeepSeek-LLM-7B-Chat,5B~10B,71.63/0.17,69.50/0.15,77.33/0.67,74.33/0.41,65.90/0.38
data/chinese_benchmark_per.csv CHANGED
@@ -43,4 +43,4 @@ Opt-6.7B,5B~10B,48.54/0.43,49.24/0.31,86.62/1.03,43.40/1.18,10.30/0.55
43
  Mistral-7B-Instruct-v0.3,5B~10B,42.99/0.06,39.54/0.47,26.01/0.69,44.69/0.11,60.05/0.50
44
  Llama3-ChatQA-1.5-8B,5B~10B,42.11/0.29,37.46/0.85,23.20/0.89,44.20/0.09,61.11/0.57
45
  Qwen3-4B,5B~10B,46.04/0.00,47.79/0.00,85.94/0.00,30.39/0.00,6.14/0.00
46
- Gemma-3-4B-it,5B~10B,50.00/0.00,0.00/0.00,0.00/0.00,50.00/0.00,100.00/0.00
 
43
  Mistral-7B-Instruct-v0.3,5B~10B,42.99/0.06,39.54/0.47,26.01/0.69,44.69/0.11,60.05/0.50
44
  Llama3-ChatQA-1.5-8B,5B~10B,42.11/0.29,37.46/0.85,23.20/0.89,44.20/0.09,61.11/0.57
45
  Qwen3-4B,5B~10B,46.04/0.00,47.79/0.00,85.94/0.00,30.39/0.00,6.14/0.00
46
+ Gemma-3-4B-it,5B~10B,50.00/0.00,0.00/0.00,0.00/0.00,50.00/0.00,100.00/0.00
data/subclass_gen.csv CHANGED
@@ -48,4 +48,4 @@ Opt-30B,~30B,0.4672,0.4683,0.6648,0.5002,0.5082,0.7109,0.5044,0.4987,0.7354,0.53
48
  QwQ-32B-Preview,~30B,0.6837,0.7403,0.547,0.812,0.8219,0.8084,0.606,0.6749,0.3914,0.7516,0.8198,0.6977,0.8121,0.823,0.8081,0.847,0.8208,0.8801,0.6113,0.6736,0.3973,0.605,0.67,0.3873,0.7492,0.7768,0.6783,0.4656,0.3791,0.1124
49
  Qwen3-32B,~30B,0.5416,0.5902,0.2095,0.5495,0.6557,0.2531,0.477,0.3724,0.0843,0.6293,0.66,0.6114,0.8339,0.7311,0.6644,0.9577,0.3309,0.2379,0.1626,0.6958,0.6204,0.8741,0.2629,0.9049,0.9606,0.8489,0.5103,0.547,0.0453,0.8192
50
  Gemma-3-27b-it,~30B,0.66,0.6114,0.8339,0.7311,0.6644,0.9577,0.3309,0.2379,0.1626,0.6958,0.6204,0.8741,0.2629,0.9049,0.9606,0.8489,0.5103,0.547,0.0453,0.8192,0.4672,0.4683,0.6648,0.5002,0.5082,0.7109,0.5044,0.4987,0.7354,0.5314
51
- OpenThinker2-32B,~30B,0.6204,0.8741,0.2629,0.9049,0.9606,0.8489,0.5103,0.547,0.0453,0.8192,0.4672,0.4683,0.6648,0.5002,0.5082,0.7109,0.5044,0.4987,0.7354,0.5314,0.6837,0.7403,0.547,0.812,0.8219,0.8084,0.606,0.6749,0.3914,0.7516
 
48
  QwQ-32B-Preview,~30B,0.6837,0.7403,0.547,0.812,0.8219,0.8084,0.606,0.6749,0.3914,0.7516,0.8198,0.6977,0.8121,0.823,0.8081,0.847,0.8208,0.8801,0.6113,0.6736,0.3973,0.605,0.67,0.3873,0.7492,0.7768,0.6783,0.4656,0.3791,0.1124
49
  Qwen3-32B,~30B,0.5416,0.5902,0.2095,0.5495,0.6557,0.2531,0.477,0.3724,0.0843,0.6293,0.66,0.6114,0.8339,0.7311,0.6644,0.9577,0.3309,0.2379,0.1626,0.6958,0.6204,0.8741,0.2629,0.9049,0.9606,0.8489,0.5103,0.547,0.0453,0.8192
50
  Gemma-3-27b-it,~30B,0.66,0.6114,0.8339,0.7311,0.6644,0.9577,0.3309,0.2379,0.1626,0.6958,0.6204,0.8741,0.2629,0.9049,0.9606,0.8489,0.5103,0.547,0.0453,0.8192,0.4672,0.4683,0.6648,0.5002,0.5082,0.7109,0.5044,0.4987,0.7354,0.5314
51
+ OpenThinker2-32B,~30B,0.6204,0.8741,0.2629,0.9049,0.9606,0.8489,0.5103,0.547,0.0453,0.8192,0.4672,0.4683,0.6648,0.5002,0.5082,0.7109,0.5044,0.4987,0.7354,0.5314,0.6837,0.7403,0.547,0.812,0.8219,0.8084,0.606,0.6749,0.3914,0.7516
data/subclass_per.csv CHANGED
@@ -41,4 +41,4 @@ Opt-30B,~30B,0.5831,0.5754,0.5565,0.3952,0.338,0.1915,0.6784,0.6507,0.7506,0.579
41
  QwQ-32B-Preview,~30B,0.5231,0.5061,0.9839,0.5519,0.5328,1,0.4141,0.4443,0.7537,0.5814,0.565,0.9989,0.5529,0.534,0.9993,0.5318,0.5111,0.9993,0.5083,0.4978,0.9542,0.4392,0.4593,0.808,0.5238,0.5042,0.9922,0.5269,0.5128,0.9743
42
  Mistral-Small-24B-Instruct-2501,~30B,0.5897,0.5714,0.6393,0.7706,0.6931,0.9888,0.3109,0.1339,0.0727,0.7308,0.6984,0.8887,0.7454,0.683,0.9385,0.7584,0.6732,0.9835,0.585,0.5671,0.6297,0.3646,0.2744,0.1803,0.7088,0.645,0.8855,0.3839,0.3257,0.2233
43
  OpenThinker2-32B,~30B,0.7139 ,0.8341 ,0.5176 ,0.7722 ,0.8735 ,0.6482 ,0.4750 ,0.2581 ,0.0357 ,0.7162 ,0.6749 ,0.6366 ,0.7789 ,0.7893 ,0.7099 ,0.9938 ,0.4372 ,0.4025 ,0.2943 ,0.7921 ,0.5831 ,0.5754 ,0.5565 ,0.3952 ,0.3380 ,0.1915 ,0.6784 ,0.6507 ,0.7506 ,0.5798
44
- Qwen3-32B,~30B,0.6749 ,0.6366 ,0.7789 ,0.7893 ,0.7099 ,0.9938 ,0.4372 ,0.4025 ,0.2943 ,0.7921 ,0.5831 ,0.5754 ,0.5565 ,0.3952 ,0.3380 ,0.1915 ,0.6784 ,0.6507 ,0.7506 ,0.5798 ,0.5231 ,0.5061 ,0.9839 ,0.5519 ,0.5328 ,1.0000 ,0.4141 ,0.4443 ,0.7537 ,0.5814
 
41
  QwQ-32B-Preview,~30B,0.5231,0.5061,0.9839,0.5519,0.5328,1,0.4141,0.4443,0.7537,0.5814,0.565,0.9989,0.5529,0.534,0.9993,0.5318,0.5111,0.9993,0.5083,0.4978,0.9542,0.4392,0.4593,0.808,0.5238,0.5042,0.9922,0.5269,0.5128,0.9743
42
  Mistral-Small-24B-Instruct-2501,~30B,0.5897,0.5714,0.6393,0.7706,0.6931,0.9888,0.3109,0.1339,0.0727,0.7308,0.6984,0.8887,0.7454,0.683,0.9385,0.7584,0.6732,0.9835,0.585,0.5671,0.6297,0.3646,0.2744,0.1803,0.7088,0.645,0.8855,0.3839,0.3257,0.2233
43
  OpenThinker2-32B,~30B,0.7139 ,0.8341 ,0.5176 ,0.7722 ,0.8735 ,0.6482 ,0.4750 ,0.2581 ,0.0357 ,0.7162 ,0.6749 ,0.6366 ,0.7789 ,0.7893 ,0.7099 ,0.9938 ,0.4372 ,0.4025 ,0.2943 ,0.7921 ,0.5831 ,0.5754 ,0.5565 ,0.3952 ,0.3380 ,0.1915 ,0.6784 ,0.6507 ,0.7506 ,0.5798
44
+ Qwen3-32B,~30B,0.6749 ,0.6366 ,0.7789 ,0.7893 ,0.7099 ,0.9938 ,0.4372 ,0.4025 ,0.2943 ,0.7921 ,0.5831 ,0.5754 ,0.5565 ,0.3952 ,0.3380 ,0.1915 ,0.6784 ,0.6507 ,0.7506 ,0.5798 ,0.5231 ,0.5061 ,0.9839 ,0.5519 ,0.5328 ,1.0000 ,0.4141 ,0.4443 ,0.7537 ,0.5814