|
import streamlit as st |
|
from PIL import Image |
|
import os |
|
import base64 |
|
import io |
|
from dotenv import load_dotenv |
|
from groq import Groq |
|
from reportlab.lib.pagesizes import letter |
|
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as ReportLabImage |
|
from reportlab.lib.styles import getSampleStyleSheet |
|
|
|
|
|
st.set_page_config( |
|
page_title="Smart Diet Analyzer", |
|
page_icon="π", |
|
layout="wide", |
|
initial_sidebar_state="expanded" |
|
) |
|
|
|
ALLOWED_FILE_TYPES = ['png', 'jpg', 'jpeg'] |
|
|
|
|
|
def initialize_api_client(): |
|
"""Initialize Groq API client""" |
|
load_dotenv() |
|
api_key = os.getenv("GROQ_API_KEY") |
|
if not api_key: |
|
st.error("API key not found. Please verify .env configuration.") |
|
st.stop() |
|
return Groq(api_key=api_key) |
|
|
|
|
|
def encode_image(image_path): |
|
"""Encode an image to base64""" |
|
try: |
|
with open(image_path, "rb") as img_file: |
|
return base64.b64encode(img_file.read()).decode("utf-8") |
|
except FileNotFoundError: |
|
return "" |
|
|
|
|
|
def process_image(uploaded_file): |
|
"""Convert image to base64 string""" |
|
try: |
|
image = Image.open(uploaded_file) |
|
buffer = io.BytesIO() |
|
image.save(buffer, format=image.format) |
|
return base64.b64encode(buffer.getvalue()).decode('utf-8'), image.format |
|
except Exception as e: |
|
st.error(f"Image processing error: {e}") |
|
return None, None |
|
|
|
|
|
def generate_pdf(report_text, logo_b64): |
|
"""Generate a PDF report with logo""" |
|
buffer = io.BytesIO() |
|
doc = SimpleDocTemplate(buffer, pagesize=letter) |
|
styles = getSampleStyleSheet() |
|
|
|
|
|
logo_data = base64.b64decode(logo_b64) |
|
logo_image = Image.open(io.BytesIO(logo_data)) |
|
|
|
|
|
logo_width, logo_height = logo_image.size |
|
logo_aspect = logo_height / logo_width |
|
max_logo_width = 150 |
|
logo_width = min(logo_width, max_logo_width) |
|
logo_height = int(logo_width * logo_aspect) |
|
|
|
|
|
logo = ReportLabImage(io.BytesIO(logo_data), width=logo_width, height=logo_height) |
|
|
|
|
|
story = [ |
|
logo, |
|
Spacer(1, 12), |
|
Paragraph("<b>Nutrition Analysis Report</b>", styles['Title']), |
|
Spacer(1, 12), |
|
Paragraph(report_text.replace('\n', '<br/>'), styles['BodyText']) |
|
] |
|
|
|
doc.build(story) |
|
buffer.seek(0) |
|
return buffer |
|
|
|
|
|
def generate_analysis(uploaded_file, client): |
|
"""Generate AI-powered food analysis""" |
|
base64_image, img_format = process_image(uploaded_file) |
|
if not base64_image: |
|
return None |
|
|
|
image_url = f"data:image/{img_format.lower()};base64,{base64_image}" |
|
|
|
try: |
|
response = client.chat.completions.create( |
|
model="llama-3.2-11b-vision-preview", |
|
messages=[ |
|
{ |
|
"type": "text", |
|
"text": """ |
|
You are an expert nutritionist with advanced image analysis capabilities. |
|
Your task is to analyze the provided image, identify all visible food items, and estimate their calorie content with high accuracy. |
|
**Instructions:** |
|
- Identify and list each food item visible in the image. |
|
- For each item, estimate the calorie content based on standard nutritional data, considering portion size, cooking method, and food density. |
|
- Clearly mark any calorie estimate as "approximate" if based on assumptions due to unclear details. |
|
- Calculate and provide the total estimated calories for the entire meal. |
|
**Output Format:** |
|
- Food Item 1: [Name] β Estimated Calories: [value] kcal |
|
- Food Item 2: [Name] β Estimated Calories: [value] kcal |
|
- ... |
|
- **Total Estimated Calories:** [value] kcal |
|
If the image lacks sufficient detail or is unclear, specify the limitations and include your confidence level in the estimate as a percentage. |
|
""" |
|
} |
|
], |
|
temperature=0.2, |
|
max_tokens=400, |
|
top_p=0.5 |
|
) |
|
return response.choices[0].message.content |
|
except Exception as e: |
|
st.error(f"API communication error: {e}") |
|
return None |
|
|
|
|
|
def display_main_interface(): |
|
"""Render primary application interface""" |
|
logo_b64 = encode_image("src/logo.png") |
|
|
|
|
|
st.markdown(f""" |
|
<div style="text-align: center;"> |
|
<img src="data:image/png;base64,{logo_b64}" width="100"> |
|
<h2 style="color: #4CAF50;">Smart Diet Analyzer</h2> |
|
<p style="color: #FF6347;">AI-Powered Food & Nutrition Analysis</p> |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
st.markdown("---") |
|
|
|
if st.session_state.get('analysis_result'): |
|
|
|
col1, col2 = st.columns([1, 1]) |
|
|
|
|
|
with col1: |
|
pdf_report = generate_pdf(st.session_state.analysis_result, logo_b64) |
|
st.download_button("π Download Nutrition Report", data=pdf_report, file_name="nutrition_report.pdf", mime="application/pdf") |
|
|
|
|
|
with col2: |
|
if st.button("Clear Analysis ποΈ"): |
|
st.session_state.pop('analysis_result') |
|
st.rerun() |
|
|
|
if st.session_state.get('analysis_result'): |
|
st.markdown("### π― Nutrition Analysis Report") |
|
st.info(st.session_state.analysis_result) |
|
|
|
|
|
def render_sidebar(client): |
|
"""Create sidebar UI elements""" |
|
with st.sidebar: |
|
st.subheader("Image Upload") |
|
uploaded_file = st.file_uploader("Upload Food Image", type=ALLOWED_FILE_TYPES) |
|
|
|
if uploaded_file: |
|
st.image(Image.open(uploaded_file), caption="Uploaded Food Image") |
|
if st.button("Analyze Meal π½οΈ"): |
|
with st.spinner("Analyzing image..."): |
|
report = generate_analysis(uploaded_file, client) |
|
st.session_state.analysis_result = report |
|
st.rerun() |
|
|
|
|
|
def main(): |
|
"""Primary application controller""" |
|
client = initialize_api_client() |
|
display_main_interface() |
|
render_sidebar(client) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|