File size: 6,882 Bytes
8e64a15 e1f3336 eb52265 e1f3336 19ee958 e1f3336 19ee958 8d64bf6 19ee958 e1f3336 19ee958 e1f3336 19ee958 e1f3336 741f169 e1f3336 741f169 e1f3336 741f169 e1f3336 19ee958 e1f3336 19ee958 e1f3336 741f169 e1f3336 741f169 8e64a15 741f169 e1f3336 741f169 e1f3336 19ee958 e1f3336 19ee958 e1f3336 19ee958 e1f3336 19ee958 e1f3336 19ee958 e1f3336 19ee958 e1f3336 19ee958 e1f3336 19ee958 e1f3336 19ee958 e1f3336 19ee958 e1f3336 19ee958 e1f3336 8e64a15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import streamlit as st
from PIL import Image
import os
import base64
import io
from dotenv import load_dotenv
from groq import Groq
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as ReportLabImage
from reportlab.lib.styles import getSampleStyleSheet
# CONFIGURATION SETTINGS
st.set_page_config(
page_title="Smart Diet Analyzer",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
ALLOWED_FILE_TYPES = ['png', 'jpg', 'jpeg']
# UTILITY FUNCTIONS
def initialize_api_client():
"""Initialize Groq API client"""
load_dotenv()
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
st.error("API key not found. Please verify .env configuration.")
st.stop()
return Groq(api_key=api_key)
def encode_image(image_path):
"""Encode an image to base64"""
try:
with open(image_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode("utf-8")
except FileNotFoundError:
return ""
def process_image(uploaded_file):
"""Convert image to base64 string"""
try:
image = Image.open(uploaded_file)
buffer = io.BytesIO()
image.save(buffer, format=image.format)
return base64.b64encode(buffer.getvalue()).decode('utf-8'), image.format
except Exception as e:
st.error(f"Image processing error: {e}")
return None, None
def generate_pdf(report_text, logo_b64):
"""Generate a PDF report with logo"""
buffer = io.BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=letter)
styles = getSampleStyleSheet()
# Decode the base64 logo image
logo_data = base64.b64decode(logo_b64)
logo_image = Image.open(io.BytesIO(logo_data))
# Resize the logo to fit the page width (you can adjust size if necessary)
logo_width, logo_height = logo_image.size
logo_aspect = logo_height / logo_width
max_logo_width = 150 # Adjust as needed
logo_width = min(logo_width, max_logo_width)
logo_height = int(logo_width * logo_aspect)
# Create a ReportLab Image element to add the logo to the PDF
logo = ReportLabImage(io.BytesIO(logo_data), width=logo_width, height=logo_height)
# Build the PDF content
story = [
logo, # Add the logo at the top of the page
Spacer(1, 12), # Space after the logo
Paragraph("<b>Nutrition Analysis Report</b>", styles['Title']),
Spacer(1, 12),
Paragraph(report_text.replace('\n', '<br/>'), styles['BodyText'])
]
doc.build(story)
buffer.seek(0)
return buffer
def generate_analysis(uploaded_file, client):
"""Generate AI-powered food analysis"""
base64_image, img_format = process_image(uploaded_file)
if not base64_image:
return None
image_url = f"data:image/{img_format.lower()};base64,{base64_image}"
try:
response = client.chat.completions.create(
model="llama-3.2-11b-vision-preview",
messages=[
{
"type": "text",
"text": """
You are an expert nutritionist with advanced image analysis capabilities.
Your task is to analyze the provided image, identify all visible food items, and estimate their calorie content with high accuracy.
**Instructions:**
- Identify and list each food item visible in the image.
- For each item, estimate the calorie content based on standard nutritional data, considering portion size, cooking method, and food density.
- Clearly mark any calorie estimate as "approximate" if based on assumptions due to unclear details.
- Calculate and provide the total estimated calories for the entire meal.
**Output Format:**
- Food Item 1: [Name] β Estimated Calories: [value] kcal
- Food Item 2: [Name] β Estimated Calories: [value] kcal
- ...
- **Total Estimated Calories:** [value] kcal
If the image lacks sufficient detail or is unclear, specify the limitations and include your confidence level in the estimate as a percentage.
"""
}
],
temperature=0.2,
max_tokens=400,
top_p=0.5
)
return response.choices[0].message.content
except Exception as e:
st.error(f"API communication error: {e}")
return None
# UI COMPONENTS
def display_main_interface():
"""Render primary application interface"""
logo_b64 = encode_image("src/logo.png")
# HTML with inline styles to change text colors
st.markdown(f"""
<div style="text-align: center;">
<img src="data:image/png;base64,{logo_b64}" width="100">
<h2 style="color: #4CAF50;">Smart Diet Analyzer</h2>
<p style="color: #FF6347;">AI-Powered Food & Nutrition Analysis</p>
</div>
""", unsafe_allow_html=True)
st.markdown("---")
if st.session_state.get('analysis_result'):
# Create two columns: one for download and one for clear button
col1, col2 = st.columns([1, 1])
# Left column for the Download button
with col1:
pdf_report = generate_pdf(st.session_state.analysis_result, logo_b64)
st.download_button("π Download Nutrition Report", data=pdf_report, file_name="nutrition_report.pdf", mime="application/pdf")
# Right column for the Clear button
with col2:
if st.button("Clear Analysis ποΈ"):
st.session_state.pop('analysis_result')
st.rerun()
if st.session_state.get('analysis_result'):
st.markdown("### π― Nutrition Analysis Report")
st.info(st.session_state.analysis_result)
def render_sidebar(client):
"""Create sidebar UI elements"""
with st.sidebar:
st.subheader("Image Upload")
uploaded_file = st.file_uploader("Upload Food Image", type=ALLOWED_FILE_TYPES)
if uploaded_file:
st.image(Image.open(uploaded_file), caption="Uploaded Food Image")
if st.button("Analyze Meal π½οΈ"):
with st.spinner("Analyzing image..."):
report = generate_analysis(uploaded_file, client)
st.session_state.analysis_result = report
st.rerun()
# APPLICATION ENTRYPOINT
def main():
"""Primary application controller"""
client = initialize_api_client()
display_main_interface()
render_sidebar(client)
if __name__ == "__main__":
main()
|