SURESHBEEKHANI commited on
Commit
741f169
·
verified ·
1 Parent(s): 19ee958

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -47
app.py CHANGED
@@ -1,4 +1,4 @@
1
- import streamlit as st
2
  from PIL import Image
3
  import os
4
  import base64
@@ -44,30 +44,15 @@ def encode_image(image_path):
44
  return ""
45
 
46
 
47
- def resize_image(image):
48
- """Resize the image to reduce size before encoding it to base64"""
49
- max_width = 800 # Max width in pixels
50
- max_height = 800 # Max height in pixels
51
- image.thumbnail((max_width, max_height))
52
- return image
53
-
54
-
55
- def compress_image(image):
56
- """Compress the image to JPEG format with a lower quality to reduce size"""
57
- buffer = io.BytesIO()
58
- image.save(buffer, format="JPEG", quality=70) # Reduce quality to 70%
59
- return base64.b64encode(buffer.getvalue()).decode('utf-8')
60
-
61
-
62
  def process_image(uploaded_file):
63
- """Convert uploaded image file to base64 string with compression"""
64
  try:
65
  image = Image.open(uploaded_file)
66
- image = resize_image(image) # Resize the image to reduce its size
67
- base64_image = compress_image(image) # Compress the image
68
- return base64_image, "jpeg" # Use 'jpeg' as format
69
  except Exception as e:
70
- st.error(f"Error processing image: {e}")
71
  return None, None
72
 
73
 
@@ -106,10 +91,9 @@ def generate_pdf(report_text, logo_b64):
106
 
107
 
108
  def generate_analysis(uploaded_file, client):
109
- """Generate nutrition analysis using AI (Groq API)"""
110
  base64_image, img_format = process_image(uploaded_file)
111
  if not base64_image:
112
- st.error("Failed to process image. Cannot generate analysis.")
113
  return None
114
 
115
  image_url = f"data:image/{img_format.lower()};base64,{base64_image}"
@@ -117,35 +101,34 @@ def generate_analysis(uploaded_file, client):
117
  try:
118
  response = client.chat.completions.create(
119
  model="llama-3.2-11b-vision-preview",
120
- messages=[{
121
- "role": "system", # Define the role for the system message
122
- "content": """
123
- You are an expert nutritionist with advanced image analysis capabilities.
124
- Your task is to analyze the provided image, identify all visible food items, and estimate their calorie content with high accuracy.
125
- **Instructions:**
126
- - Identify and list each food item visible in the image.
127
- - For each item, estimate the calorie content based on standard nutritional data, considering portion size, cooking method, and food density.
128
- - Clearly mark any calorie estimate as "approximate" if based on assumptions due to unclear details.
129
- - Calculate and provide the total estimated calories for the entire meal.
130
- **Output Format:**
131
- - Food Item 1: [Name] – Estimated Calories: [value] kcal
132
- - Food Item 2: [Name] – Estimated Calories: [value] kcal
133
- - ...
134
- - **Total Estimated Calories:** [value] kcal
135
- If the image lacks sufficient detail or is unclear, specify the limitations and include your confidence level in the estimate as a percentage.
136
- """
137
- },
138
- {
139
- "role": "user", # Define the role for the user message
140
- "content": f"Analyze this image and provide the nutrition analysis: {image_url}"
141
- }],
142
  temperature=0.2,
143
  max_tokens=400,
144
  top_p=0.5
145
  )
146
  return response.choices[0].message.content
147
  except Exception as e:
148
- st.error(f"Error communicating with API: {e}")
149
  return None
150
 
151
  # ======================
@@ -212,4 +195,4 @@ def main():
212
  render_sidebar(client)
213
 
214
  if __name__ == "__main__":
215
- main()
 
1
+ streamlit as st
2
  from PIL import Image
3
  import os
4
  import base64
 
44
  return ""
45
 
46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  def process_image(uploaded_file):
48
+ """Convert image to base64 string"""
49
  try:
50
  image = Image.open(uploaded_file)
51
+ buffer = io.BytesIO()
52
+ image.save(buffer, format=image.format)
53
+ return base64.b64encode(buffer.getvalue()).decode('utf-8'), image.format
54
  except Exception as e:
55
+ st.error(f"Image processing error: {e}")
56
  return None, None
57
 
58
 
 
91
 
92
 
93
  def generate_analysis(uploaded_file, client):
94
+ """Generate AI-powered food analysis"""
95
  base64_image, img_format = process_image(uploaded_file)
96
  if not base64_image:
 
97
  return None
98
 
99
  image_url = f"data:image/{img_format.lower()};base64,{base64_image}"
 
101
  try:
102
  response = client.chat.completions.create(
103
  model="llama-3.2-11b-vision-preview",
104
+ messages=[
105
+ {
106
+ "type": "text",
107
+ "text": """
108
+ You are an expert nutritionist with advanced image analysis capabilities.
109
+ Your task is to analyze the provided image, identify all visible food items, and estimate their calorie content with high accuracy.
110
+ **Instructions:**
111
+ - Identify and list each food item visible in the image.
112
+ - For each item, estimate the calorie content based on standard nutritional data, considering portion size, cooking method, and food density.
113
+ - Clearly mark any calorie estimate as "approximate" if based on assumptions due to unclear details.
114
+ - Calculate and provide the total estimated calories for the entire meal.
115
+ **Output Format:**
116
+ - Food Item 1: [Name] – Estimated Calories: [value] kcal
117
+ - Food Item 2: [Name] – Estimated Calories: [value] kcal
118
+ - ...
119
+ - **Total Estimated Calories:** [value] kcal
120
+ If the image lacks sufficient detail or is unclear, specify the limitations and include your confidence level in the estimate as a percentage.
121
+ """
122
+ }
123
+
124
+ ],
 
125
  temperature=0.2,
126
  max_tokens=400,
127
  top_p=0.5
128
  )
129
  return response.choices[0].message.content
130
  except Exception as e:
131
+ st.error(f"API communication error: {e}")
132
  return None
133
 
134
  # ======================
 
195
  render_sidebar(client)
196
 
197
  if __name__ == "__main__":
198
+ main()