|
import streamlit as st |
|
from PIL import Image |
|
import cv2 |
|
import os |
|
import base64 |
|
import io |
|
from dotenv import load_dotenv |
|
from groq import Groq |
|
from reportlab.lib.pagesizes import letter |
|
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer |
|
from reportlab.lib.styles import getSampleStyleSheet |
|
|
|
|
|
|
|
|
|
PAGE_CONFIG = { |
|
"page_title": "Rice Quality Analyzer", |
|
"page_icon": "πΎ", |
|
"layout": "wide", |
|
"initial_sidebar_state": "expanded" |
|
} |
|
|
|
ALLOWED_FILE_TYPES = ['png', 'jpg', 'jpeg'] |
|
ALLOWED_VIDEO_TYPES = ['mp4', 'avi', 'mov'] |
|
|
|
CSS_STYLES = """ |
|
<style> |
|
.main { background-color: #f4f9f9; color: #000000; } |
|
.sidebar .sidebar-content { background-color: #d1e7dd; } |
|
.stTextInput textarea { color: #000000 !important; } |
|
.stButton>button { |
|
background-color: #21eeef; |
|
color: white; |
|
font-size: 16px; |
|
border-radius: 5px; |
|
} |
|
.report-container { |
|
background-color: #ffffff; |
|
border-radius: 15px; |
|
padding: 20px; |
|
margin-top: 20px; |
|
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); |
|
border-left: 5px solid #21eeef; |
|
} |
|
.report-text { |
|
font-family: 'Arial', sans-serif; |
|
font-size: 14px; |
|
line-height: 1.6; |
|
color: #2c3e50; |
|
} |
|
</style> |
|
""" |
|
|
|
|
|
|
|
|
|
def configure_application(): |
|
"""Initialize application settings and styling""" |
|
st.set_page_config(**PAGE_CONFIG) |
|
st.markdown(CSS_STYLES, unsafe_allow_html=True) |
|
|
|
def initialize_api_client(): |
|
"""Create and validate Groq API client""" |
|
load_dotenv() |
|
api_key = os.getenv("GROQ_API_KEY") |
|
|
|
if not api_key: |
|
st.error("API key not found. Please verify .env configuration.") |
|
st.stop() |
|
|
|
return Groq(api_key=api_key) |
|
|
|
def process_image_data(uploaded_file): |
|
"""Convert image to base64 encoded string""" |
|
try: |
|
image = Image.open(uploaded_file) |
|
buffer = io.BytesIO() |
|
image.save(buffer, format=image.format) |
|
return base64.b64encode(buffer.getvalue()).decode('utf-8'), image.format |
|
except Exception as e: |
|
st.error(f"Image processing error: {str(e)}") |
|
return None, None |
|
|
|
def extract_video_frames(uploaded_video): |
|
"""Extract frames from uploaded video for analysis""" |
|
try: |
|
tfile = io.BytesIO(uploaded_video.read()) |
|
temp_filename = "temp_video.mp4" |
|
with open(temp_filename, "wb") as f: |
|
f.write(tfile.getvalue()) |
|
|
|
cap = cv2.VideoCapture(temp_filename) |
|
frame_list = [] |
|
frame_count = 0 |
|
|
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if not ret or frame_count > 10: |
|
break |
|
frame_list.append(frame) |
|
frame_count += 1 |
|
|
|
cap.release() |
|
os.remove(temp_filename) |
|
return frame_list |
|
except Exception as e: |
|
st.error(f"Video processing error: {str(e)}") |
|
return [] |
|
|
|
def generate_pdf_report(report_text): |
|
"""Generate PDF document from report text""" |
|
buffer = io.BytesIO() |
|
doc = SimpleDocTemplate(buffer, pagesize=letter) |
|
styles = getSampleStyleSheet() |
|
story = [] |
|
|
|
title = Paragraph("<b>Rice Quality Report</b>", styles['Title']) |
|
story.append(title) |
|
story.append(Spacer(1, 12)) |
|
|
|
content = Paragraph(report_text.replace('\n', '<br/>'), styles['BodyText']) |
|
story.append(content) |
|
|
|
doc.build(story) |
|
buffer.seek(0) |
|
return buffer |
|
|
|
def generate_rice_report(image_data, img_format, client): |
|
"""Generate AI-powered rice quality analysis""" |
|
if not image_data: |
|
return None |
|
|
|
image_url = f"data:image/{img_format.lower()};base64,{image_data}" |
|
|
|
try: |
|
response = client.chat.completions.create( |
|
model="llama-3.2-11b-vision-preview", |
|
messages=[{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": ( |
|
"Analyze the rice grain image and provide a detailed report including:\n" |
|
"1. Rice type classification\n" |
|
"2. Quality assessment (broken grains %, discoloration %, impurities %)\n" |
|
"3. Foreign object detection\n" |
|
"4. Size and shape consistency\n" |
|
"5. Recommendations for processing or improvement" |
|
)}, |
|
{"type": "image_url", "image_url": {"url": image_url}}, |
|
] |
|
}], |
|
temperature=0.2, |
|
max_tokens=400, |
|
top_p=0.5 |
|
) |
|
return response.choices[0].message.content |
|
except Exception as e: |
|
st.error(f"API communication error: {str(e)}") |
|
return None |
|
|
|
|
|
|
|
|
|
def display_main_interface(): |
|
"""Render primary application interface""" |
|
st.title("πΎ Rice Quality Analyzer") |
|
st.subheader("AI-Powered Rice Grain Inspection") |
|
st.markdown("---") |
|
|
|
def render_sidebar(client): |
|
"""Create sidebar interface elements""" |
|
with st.sidebar: |
|
st.subheader("Upload Image or Video") |
|
uploaded_file = st.file_uploader("Select an image or video", type=ALLOWED_FILE_TYPES + ALLOWED_VIDEO_TYPES) |
|
|
|
if uploaded_file: |
|
file_type = uploaded_file.type |
|
if "video" in file_type: |
|
frames = extract_video_frames(uploaded_file) |
|
if frames: |
|
st.image(frames[0], caption="Extracted Frame for Analysis", use_column_width=True) |
|
frame_img = Image.fromarray(cv2.cvtColor(frames[0], cv2.COLOR_BGR2RGB)) |
|
buffer = io.BytesIO() |
|
frame_img.save(buffer, format="JPEG") |
|
base64_image = base64.b64encode(buffer.getvalue()).decode('utf-8') |
|
report = generate_rice_report(base64_image, "jpeg", client) |
|
else: |
|
st.image(Image.open(uploaded_file), caption="Uploaded Image", use_column_width=True) |
|
base64_image, img_format = process_image_data(uploaded_file) |
|
report = generate_rice_report(base64_image, img_format, client) |
|
|
|
if report: |
|
st.markdown("### π Analysis Report") |
|
st.markdown(report) |
|
|
|
|
|
|
|
|
|
def main(): |
|
configure_application() |
|
groq_client = initialize_api_client() |
|
display_main_interface() |
|
render_sidebar(groq_client) |
|
|
|
if __name__ == "__main__": |
|
main() |