SURESHBEEKHANI's picture
Update app.py
22abdaa verified
raw
history blame
6.76 kB
import streamlit as st
from PIL import Image
import cv2
import os
import base64
import io
from dotenv import load_dotenv
from groq import Groq
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet
# ======================
# CONFIGURATION SETTINGS
# ======================
PAGE_CONFIG = {
"page_title": "Rice Quality Analyzer",
"page_icon": "🌾",
"layout": "wide",
"initial_sidebar_state": "expanded"
}
ALLOWED_FILE_TYPES = ['png', 'jpg', 'jpeg']
ALLOWED_VIDEO_TYPES = ['mp4', 'avi', 'mov']
CSS_STYLES = """
<style>
.main { background-color: #f4f9f9; color: #000000; }
.sidebar .sidebar-content { background-color: #d1e7dd; }
.stTextInput textarea { color: #000000 !important; }
.stButton>button {
background-color: #21eeef;
color: white;
font-size: 16px;
border-radius: 5px;
}
.report-container {
background-color: #ffffff;
border-radius: 15px;
padding: 20px;
margin-top: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
border-left: 5px solid #21eeef;
}
.report-text {
font-family: 'Arial', sans-serif;
font-size: 14px;
line-height: 1.6;
color: #2c3e50;
}
</style>
"""
# ======================
# CORE FUNCTIONS
# ======================
def configure_application():
"""Initialize application settings and styling"""
st.set_page_config(**PAGE_CONFIG)
st.markdown(CSS_STYLES, unsafe_allow_html=True)
def initialize_api_client():
"""Create and validate Groq API client"""
load_dotenv()
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
st.error("API key not found. Please verify .env configuration.")
st.stop()
return Groq(api_key=api_key)
def process_image_data(uploaded_file):
"""Convert image to base64 encoded string"""
try:
image = Image.open(uploaded_file)
buffer = io.BytesIO()
image.save(buffer, format=image.format)
return base64.b64encode(buffer.getvalue()).decode('utf-8'), image.format
except Exception as e:
st.error(f"Image processing error: {str(e)}")
return None, None
def extract_video_frames(uploaded_video):
"""Extract frames from uploaded video for analysis"""
try:
tfile = io.BytesIO(uploaded_video.read())
temp_filename = "temp_video.mp4"
with open(temp_filename, "wb") as f:
f.write(tfile.getvalue())
cap = cv2.VideoCapture(temp_filename)
frame_list = []
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret or frame_count > 10: # Process only up to 10 frames
break
frame_list.append(frame)
frame_count += 1
cap.release()
os.remove(temp_filename)
return frame_list
except Exception as e:
st.error(f"Video processing error: {str(e)}")
return []
def generate_pdf_report(report_text):
"""Generate PDF document from report text"""
buffer = io.BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=letter)
styles = getSampleStyleSheet()
story = []
title = Paragraph("<b>Rice Quality Report</b>", styles['Title'])
story.append(title)
story.append(Spacer(1, 12))
content = Paragraph(report_text.replace('\n', '<br/>'), styles['BodyText'])
story.append(content)
doc.build(story)
buffer.seek(0)
return buffer
def generate_rice_report(image_data, img_format, client):
"""Generate AI-powered rice quality analysis"""
if not image_data:
return None
image_url = f"data:image/{img_format.lower()};base64,{image_data}"
try:
response = client.chat.completions.create(
model="llama-3.2-11b-vision-preview",
messages=[{
"role": "user",
"content": [
{"type": "text", "text": (
"Analyze the rice grain image and provide a detailed report including:\n"
"1. Rice type classification\n"
"2. Quality assessment (broken grains %, discoloration %, impurities %)\n"
"3. Foreign object detection\n"
"4. Size and shape consistency\n"
"5. Recommendations for processing or improvement"
)},
{"type": "image_url", "image_url": {"url": image_url}},
]
}],
temperature=0.2,
max_tokens=400,
top_p=0.5
)
return response.choices[0].message.content
except Exception as e:
st.error(f"API communication error: {str(e)}")
return None
# ======================
# UI COMPONENTS
# ======================
def display_main_interface():
"""Render primary application interface"""
st.title("🌾 Rice Quality Analyzer")
st.subheader("AI-Powered Rice Grain Inspection")
st.markdown("---")
def render_sidebar(client):
"""Create sidebar interface elements"""
with st.sidebar:
st.subheader("Upload Image or Video")
uploaded_file = st.file_uploader("Select an image or video", type=ALLOWED_FILE_TYPES + ALLOWED_VIDEO_TYPES)
if uploaded_file:
file_type = uploaded_file.type
if "video" in file_type:
frames = extract_video_frames(uploaded_file)
if frames:
st.image(frames[0], caption="Extracted Frame for Analysis", use_column_width=True)
frame_img = Image.fromarray(cv2.cvtColor(frames[0], cv2.COLOR_BGR2RGB))
buffer = io.BytesIO()
frame_img.save(buffer, format="JPEG")
base64_image = base64.b64encode(buffer.getvalue()).decode('utf-8')
report = generate_rice_report(base64_image, "jpeg", client)
else:
st.image(Image.open(uploaded_file), caption="Uploaded Image", use_column_width=True)
base64_image, img_format = process_image_data(uploaded_file)
report = generate_rice_report(base64_image, img_format, client)
if report:
st.markdown("### πŸ“‹ Analysis Report")
st.markdown(report)
# ======================
# APPLICATION ENTRYPOINT
# ======================
def main():
configure_application()
groq_client = initialize_api_client()
display_main_interface()
render_sidebar(groq_client)
if __name__ == "__main__":
main()