import streamlit as st from PIL import Image import cv2 import os import base64 import io from dotenv import load_dotenv from groq import Groq from reportlab.lib.pagesizes import letter from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer from reportlab.lib.styles import getSampleStyleSheet # ====================== # CONFIGURATION SETTINGS # ====================== PAGE_CONFIG = { "page_title": "Rice Quality Analyzer", "page_icon": "🌾", "layout": "wide", "initial_sidebar_state": "expanded" } ALLOWED_FILE_TYPES = ['png', 'jpg', 'jpeg'] ALLOWED_VIDEO_TYPES = ['mp4', 'avi', 'mov'] CSS_STYLES = """ """ # ====================== # CORE FUNCTIONS # ====================== def configure_application(): """Initialize application settings and styling""" st.set_page_config(**PAGE_CONFIG) st.markdown(CSS_STYLES, unsafe_allow_html=True) def initialize_api_client(): """Create and validate Groq API client""" load_dotenv() api_key = os.getenv("GROQ_API_KEY") if not api_key: st.error("API key not found. Please verify .env configuration.") st.stop() return Groq(api_key=api_key) def process_image_data(uploaded_file): """Convert image to base64 encoded string""" try: image = Image.open(uploaded_file) buffer = io.BytesIO() image.save(buffer, format=image.format) return base64.b64encode(buffer.getvalue()).decode('utf-8'), image.format except Exception as e: st.error(f"Image processing error: {str(e)}") return None, None def extract_video_frames(uploaded_video): """Extract frames from uploaded video for analysis""" try: tfile = io.BytesIO(uploaded_video.read()) temp_filename = "temp_video.mp4" with open(temp_filename, "wb") as f: f.write(tfile.getvalue()) cap = cv2.VideoCapture(temp_filename) frame_list = [] frame_count = 0 while cap.isOpened(): ret, frame = cap.read() if not ret or frame_count > 10: # Process only up to 10 frames break frame_list.append(frame) frame_count += 1 cap.release() os.remove(temp_filename) return frame_list except Exception as e: st.error(f"Video processing error: {str(e)}") return [] def generate_pdf_report(report_text): """Generate PDF document from report text""" buffer = io.BytesIO() doc = SimpleDocTemplate(buffer, pagesize=letter) styles = getSampleStyleSheet() story = [] title = Paragraph("Rice Quality Report", styles['Title']) story.append(title) story.append(Spacer(1, 12)) content = Paragraph(report_text.replace('\n', '
'), styles['BodyText']) story.append(content) doc.build(story) buffer.seek(0) return buffer def generate_rice_report(image_data, img_format, client): """Generate AI-powered rice quality analysis""" if not image_data: return None image_url = f"data:image/{img_format.lower()};base64,{image_data}" try: response = client.chat.completions.create( model="llama-3.2-11b-vision-preview", messages=[{ "role": "user", "content": [ {"type": "text", "text": ( "Analyze the rice grain image and provide a detailed report including:\n" "1. Rice type classification\n" "2. Quality assessment (broken grains %, discoloration %, impurities %)\n" "3. Foreign object detection\n" "4. Size and shape consistency\n" "5. Recommendations for processing or improvement" )}, {"type": "image_url", "image_url": {"url": image_url}}, ] }], temperature=0.2, max_tokens=400, top_p=0.5 ) return response.choices[0].message.content except Exception as e: st.error(f"API communication error: {str(e)}") return None # ====================== # UI COMPONENTS # ====================== def display_main_interface(): """Render primary application interface""" st.title("🌾 Rice Quality Analyzer") st.subheader("AI-Powered Rice Grain Inspection") st.markdown("---") def render_sidebar(client): """Create sidebar interface elements""" with st.sidebar: st.subheader("Upload Image or Video") uploaded_file = st.file_uploader("Select an image or video", type=ALLOWED_FILE_TYPES + ALLOWED_VIDEO_TYPES) if uploaded_file: file_type = uploaded_file.type if "video" in file_type: frames = extract_video_frames(uploaded_file) if frames: st.image(frames[0], caption="Extracted Frame for Analysis", use_column_width=True) frame_img = Image.fromarray(cv2.cvtColor(frames[0], cv2.COLOR_BGR2RGB)) buffer = io.BytesIO() frame_img.save(buffer, format="JPEG") base64_image = base64.b64encode(buffer.getvalue()).decode('utf-8') report = generate_rice_report(base64_image, "jpeg", client) else: st.image(Image.open(uploaded_file), caption="Uploaded Image", use_column_width=True) base64_image, img_format = process_image_data(uploaded_file) report = generate_rice_report(base64_image, img_format, client) if report: st.markdown("### 📋 Analysis Report") st.markdown(report) # ====================== # APPLICATION ENTRYPOINT # ====================== def main(): configure_application() groq_client = initialize_api_client() display_main_interface() render_sidebar(groq_client) if __name__ == "__main__": main()