|
from citekit.cite_modules.LLM import LLM |
|
from citekit.cite_modules.augment_model import ( |
|
Retriever, |
|
CitationSimplyfier, |
|
Verifier, |
|
Ranker, |
|
AttributingModule, |
|
) |
|
from citekit.pipeline.pipeline import Pipeline, PIPELINE_OUTPUT, PIPELINE_DOC_CACHE |
|
from citekit.prompt.prompt import Prompt, ALCEDocPrompt, DocPrompt, NewALCEVanillaPrompt |
|
from citekit.Dataset.Dataset import PromptDataset |
|
from citekit.evaluator.evaluator import ( |
|
DefaultEvaluator, |
|
compute_autoais, |
|
test_compute_autoais, |
|
) |
|
|
|
from citekit.utils.utils import ( |
|
sentence, |
|
one_paragraph, |
|
each_make_as, |
|
each_make_as, |
|
make_as, |
|
remove_citations, |
|
compute_str_em, |
|
) |
|
import json |
|
import argparse |
|
|
|
|
|
def segment(i, text): |
|
return [make_as("docs")(doc) for doc in text.split("\n") if doc] |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--save_path", type=str, default="res.json", help="Path to the config file" |
|
) |
|
parser.add_argument( |
|
"--model", type=str, default="gpt-3.5-turbo", help="model name or path" |
|
) |
|
parser.add_argument("--shots", type=int, default=2, help="number of shots") |
|
parser.add_argument("--ndoc", type=int, default=5, help="number of docs") |
|
parser.add_argument("--pr", action="store_true", help="use cite PR") |
|
parser.add_argument("--rouge", action="store_true", help="use rouge") |
|
parser.add_argument("--temp", type=float, default=0.5, help="temperature") |
|
parser.add_argument("--qa", action="store_true", help="eval qa") |
|
parser.add_argument("--mauve", action="store_true", help="eval mauve") |
|
parser.add_argument("--length", type=bool, default=True, help="eval length") |
|
parser.add_argument("--claims", action="store_true", help="eval claims") |
|
parser.add_argument("--qampari", type=str, default=False, help="eval qampari") |
|
parser.add_argument( |
|
"--dataset", type=str, default="data/asqa_eval_gtr_top100.json", help="dataset" |
|
) |
|
parser.add_argument( |
|
"--demo", type=str, default="prompts/asqa_default.json", help="demo" |
|
) |
|
parser.add_argument("--doctype", type=str, default="text", help="demo") |
|
parser.add_argument("--data_num", type=int, default=1000, help="num of data") |
|
parser.add_argument( |
|
"--mode", |
|
type=str, |
|
default="text", |
|
help="mode-granularity: text, extraction or summary", |
|
) |
|
parser.add_argument("--k", type=float, default=1.5, help="coefficient of em") |
|
parser.add_argument("--topk", type=int, default=2, help="topk") |
|
args = parser.parse_args() |
|
|
|
def score(data): |
|
|
|
|
|
|
|
|
|
|
|
return 1 |
|
|
|
|
|
file_path = args.dataset |
|
demo_path = args.demo |
|
|
|
with open(file_path, "r", encoding="utf-8") as file: |
|
dataset = json.load(file) |
|
with open(demo_path, "r", encoding="utf-8") as file: |
|
demo = json.load(file) |
|
data_num = min(args.data_num, len(dataset)) |
|
|
|
llm_instruction = demo["one_sentence_instruction"] |
|
query_inst = demo["query_instruction"] |
|
shots = "\n\n".join( |
|
NewALCEVanillaPrompt().load_data( |
|
[demo["demos"][1], demo["demos"][3]], |
|
"question", |
|
answer=lambda data: remove_citations( |
|
sentence("first")(data["answer"])["first"] |
|
), |
|
INST=lambda _: llm_instruction, |
|
docs=lambda data: "".join( |
|
ALCEDocPrompt().default_load_data(data["docs"][1:2]) |
|
), |
|
) |
|
) |
|
|
|
documents = [ |
|
DocPrompt().load_data( |
|
list(enumerate(data["docs"])), |
|
Title=lambda data: data[1]["title"], |
|
Passage=lambda data: data[1][args.mode], |
|
) |
|
for data in dataset |
|
] |
|
|
|
dataset = PromptDataset( |
|
dataset, |
|
"question", |
|
"answer", |
|
"answers", |
|
"qa_pairs", |
|
"claims", |
|
docs=lambda data: ALCEDocPrompt().default_load_data(data["docs"][: args.ndoc]), |
|
)[:data_num] |
|
|
|
prompt = Prompt( |
|
template="<shots><INST><question><ans><docs><span>\nAnswer:", |
|
components={ |
|
"INST": "{INST}\n\n", |
|
"shots": "{shots}\n", |
|
"question": "Question:{question}\n\n", |
|
"ans": "Prefix:{ans}\n\n", |
|
"docs": "{docs}\n", |
|
"span": "The highlighted spans are: \n{span}\n\n", |
|
}, |
|
) |
|
queryprompt = Prompt( |
|
template="<INST><question><prev><ans>Please generate one query to help find relevent documents. If previous queries are provided, you shoud focus on an alternative perspective or subtopic different from the provided ones, enhancing diversity in retrieved documents. your query is:\n", |
|
components={ |
|
"question": "Given the original question: {question}\n", |
|
"ans": "The context is: {ans}\n", |
|
"prev": "\nPrevious queries:\n{prev}\n\n", |
|
"INST": "{INST}\n\n", |
|
}, |
|
) |
|
|
|
retriever_prompt = Prompt(template="<query>", components={"query": "{query}"}) |
|
|
|
query_generator = LLM( |
|
model=args.model, prompt_maker=queryprompt, self_prompt={"INST": query_inst} |
|
) |
|
retriever_prompt = Prompt(template="<query>", components={"query": "{query}"}) |
|
eval = DefaultEvaluator(args) |
|
ranker = Ranker(max_turn=3, iterative=True) |
|
|
|
|
|
ranker.new_eval("score", score, output="answer", docs="doc_cache") |
|
|
|
llm = LLM( |
|
model=args.model, |
|
prompt_maker=prompt, |
|
self_prompt={"INST": llm_instruction, "shots": shots}, |
|
max_turn=30, |
|
auto_cite=True, |
|
auto_cite_from = 'span', |
|
share_model_with=query_generator, |
|
parallel=True, |
|
) |
|
pipeline = Pipeline( |
|
save_path=args.save_path, |
|
llm=llm, |
|
module=[ranker, query_generator], |
|
head_prompt_maker=prompt, |
|
evaluator=eval, |
|
dataset=dataset, |
|
) |
|
|
|
retriever = Retriever( |
|
prompt_maker=retriever_prompt, |
|
pipeline=pipeline, |
|
retrieve_by="bm25", |
|
topk=args.topk, |
|
documents=documents, |
|
) |
|
query_generator.set_target(retriever, post_processing=make_as("query")) |
|
query_generator.add_to_head("prev", sub=False) |
|
retriever.set_target(llm, post_processing=segment) |
|
llm.set_target(ranker, post_processing=make_as("answer")) |
|
ranker.set_output(post_processing=lambda x: x["answer"], end=False) |
|
|
|
ranker.add_to_head( |
|
"ans", sub=True, process=lambda text: one_paragraph(text["answer"]) |
|
) |
|
ranker.set_target(query_generator, post_processing=lambda x: {"ans": x["answer"]}) |
|
pipeline.set_initial_module(query_generator) |
|
pipeline.set_data_keys(["question"]) |
|
|
|
attributer = AttributingModule(model=args.model) |
|
attributer.connect_to(pipeline) |
|
retriever.set_target(attributer, post_processing=make_as("docs")) |
|
retriever.add_to_head("docs", sub=True) |
|
attributer.set_target(llm) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipeline.run_on_dataset(datakeys=["question"], initial_module=query_generator) |
|
|