File size: 7,541 Bytes
96b6673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from citekit.cite_modules.LLM import LLM
from citekit.cite_modules.augment_model import (
    Retriever,
    CitationSimplyfier,
    Verifier,
    Ranker,
    AttributingModule,
)
from citekit.pipeline.pipeline import Pipeline, PIPELINE_OUTPUT, PIPELINE_DOC_CACHE
from citekit.prompt.prompt import Prompt, ALCEDocPrompt, DocPrompt, NewALCEVanillaPrompt
from citekit.Dataset.Dataset import PromptDataset
from citekit.evaluator.evaluator import (
    DefaultEvaluator,
    compute_autoais,
    test_compute_autoais,
)

from citekit.utils.utils import (
    sentence,
    one_paragraph,
    each_make_as,
    each_make_as,
    make_as,
    remove_citations,
    compute_str_em,
)
import json
import argparse


def segment(i, text):
    return [make_as("docs")(doc) for doc in text.split("\n") if doc]


if __name__ == "__main__":

    # SETTING ARGS
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--save_path", type=str, default="res.json", help="Path to the config file"
    )
    parser.add_argument(
        "--model", type=str, default="gpt-3.5-turbo", help="model name or path"
    )
    parser.add_argument("--shots", type=int, default=2, help="number of shots")
    parser.add_argument("--ndoc", type=int, default=5, help="number of docs")
    parser.add_argument("--pr", action="store_true", help="use cite PR")
    parser.add_argument("--rouge", action="store_true", help="use rouge")
    parser.add_argument("--temp", type=float, default=0.5, help="temperature")
    parser.add_argument("--qa", action="store_true", help="eval qa")
    parser.add_argument("--mauve", action="store_true", help="eval mauve")
    parser.add_argument("--length", type=bool, default=True, help="eval length")
    parser.add_argument("--claims", action="store_true", help="eval claims")
    parser.add_argument("--qampari", type=str, default=False, help="eval qampari")
    parser.add_argument(
        "--dataset", type=str, default="data/asqa_eval_gtr_top100.json", help="dataset"
    )
    parser.add_argument(
        "--demo", type=str, default="prompts/asqa_default.json", help="demo"
    )
    parser.add_argument("--doctype", type=str, default="text", help="demo")
    parser.add_argument("--data_num", type=int, default=1000, help="num of data")
    parser.add_argument(
        "--mode",
        type=str,
        default="text",
        help="mode-granularity: text, extraction or summary",
    )
    parser.add_argument("--k", type=float, default=1.5, help="coefficient of em")
    parser.add_argument("--topk", type=int, default=2, help="topk")
    args = parser.parse_args()

    def score(data):
        # pr = compute_autoais(data)
        # p = pr["citation_prec"]
        # r = pr["citation_rec"]
        # em = compute_str_em(data)
        # return p + r + args.k * em
        return 1

    # DATA LOADING
    file_path = args.dataset
    demo_path = args.demo

    with open(file_path, "r", encoding="utf-8") as file:
        dataset = json.load(file)
    with open(demo_path, "r", encoding="utf-8") as file:
        demo = json.load(file)
    data_num = min(args.data_num, len(dataset))

    llm_instruction = demo["one_sentence_instruction"]
    query_inst = demo["query_instruction"]
    shots = "\n\n".join(
        NewALCEVanillaPrompt().load_data(
            [demo["demos"][1], demo["demos"][3]],
            "question",
            answer=lambda data: remove_citations(
                sentence("first")(data["answer"])["first"]
            ),
            INST=lambda _: llm_instruction,
            docs=lambda data: "".join(
                ALCEDocPrompt().default_load_data(data["docs"][1:2])
            ),
        )
    )

    documents = [
        DocPrompt().load_data(
            list(enumerate(data["docs"])),
            Title=lambda data: data[1]["title"],
            Passage=lambda data: data[1][args.mode],
        )
        for data in dataset
    ]

    dataset = PromptDataset(
        dataset,
        "question",
        "answer",
        "answers",
        "qa_pairs",
        "claims",
        docs=lambda data: ALCEDocPrompt().default_load_data(data["docs"][: args.ndoc]),
    )[:data_num]

    prompt = Prompt(
        template="<shots><INST><question><ans><docs><span>\nAnswer:",
        components={
            "INST": "{INST}\n\n",
            "shots": "{shots}\n",
            "question": "Question:{question}\n\n",
            "ans": "Prefix:{ans}\n\n",
            "docs": "{docs}\n",
            "span": "The highlighted spans are: \n{span}\n\n",
        },
    )
    queryprompt = Prompt(
        template="<INST><question><prev><ans>Please generate one query to help find relevent documents. If previous queries are provided, you shoud focus on an alternative perspective or subtopic different from the provided ones, enhancing diversity in retrieved documents. your query is:\n",
        components={
            "question": "Given the original question: {question}\n",
            "ans": "The context is: {ans}\n",
            "prev": "\nPrevious queries:\n{prev}\n\n",
            "INST": "{INST}\n\n",
        },
    )

    retriever_prompt = Prompt(template="<query>", components={"query": "{query}"})

    query_generator = LLM(
        model=args.model, prompt_maker=queryprompt, self_prompt={"INST": query_inst}
    )
    retriever_prompt = Prompt(template="<query>", components={"query": "{query}"})
    eval = DefaultEvaluator(args)
    ranker = Ranker(max_turn=3, iterative=True)
    # ranker.set_eval('length', output = 'answer')
    # ranker.new_eval('score', score , output = 'answer', docs = 'doc_cache', qa_pairs = 'qa_pairs')
    ranker.new_eval("score", score, output="answer", docs="doc_cache")
    # PIPELINE CONSTRUCTING
    llm = LLM(
        model=args.model,
        prompt_maker=prompt,
        self_prompt={"INST": llm_instruction, "shots": shots},
        max_turn=30,
        auto_cite=True,
        auto_cite_from = 'span',
        share_model_with=query_generator,
        parallel=True,
    )
    pipeline = Pipeline(
        save_path=args.save_path,
        llm=llm,
        module=[ranker, query_generator],
        head_prompt_maker=prompt,
        evaluator=eval,
        dataset=dataset,
    )

    retriever = Retriever(
        prompt_maker=retriever_prompt,
        pipeline=pipeline,
        retrieve_by="bm25",
        topk=args.topk,
        documents=documents,
    )
    query_generator.set_target(retriever, post_processing=make_as("query"))
    query_generator.add_to_head("prev", sub=False)
    retriever.set_target(llm, post_processing=segment)
    llm.set_target(ranker, post_processing=make_as("answer"))
    ranker.set_output(post_processing=lambda x: x["answer"], end=False)

    ranker.add_to_head(
        "ans", sub=True, process=lambda text: one_paragraph(text["answer"])
    )
    ranker.set_target(query_generator, post_processing=lambda x: {"ans": x["answer"]})
    pipeline.set_initial_module(query_generator)
    pipeline.set_data_keys(["question"])

    attributer = AttributingModule(model=args.model)
    attributer.connect_to(pipeline)
    retriever.set_target(attributer, post_processing=make_as("docs"))
    retriever.add_to_head("docs", sub=True)
    attributer.set_target(llm)
    # graph = PipelineGraph(pipeline=pipeline)
    # html = graph.generate_html(results='results.json')
    # graph.visualize()
    # print(html)
    # with open('pipeline_.html','w') as file:
    #    file.write(html)
    # RUN PIPELINE
    pipeline.run_on_dataset(datakeys=["question"], initial_module=query_generator)