File size: 7,541 Bytes
96b6673 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
from citekit.cite_modules.LLM import LLM
from citekit.cite_modules.augment_model import (
Retriever,
CitationSimplyfier,
Verifier,
Ranker,
AttributingModule,
)
from citekit.pipeline.pipeline import Pipeline, PIPELINE_OUTPUT, PIPELINE_DOC_CACHE
from citekit.prompt.prompt import Prompt, ALCEDocPrompt, DocPrompt, NewALCEVanillaPrompt
from citekit.Dataset.Dataset import PromptDataset
from citekit.evaluator.evaluator import (
DefaultEvaluator,
compute_autoais,
test_compute_autoais,
)
from citekit.utils.utils import (
sentence,
one_paragraph,
each_make_as,
each_make_as,
make_as,
remove_citations,
compute_str_em,
)
import json
import argparse
def segment(i, text):
return [make_as("docs")(doc) for doc in text.split("\n") if doc]
if __name__ == "__main__":
# SETTING ARGS
parser = argparse.ArgumentParser()
parser.add_argument(
"--save_path", type=str, default="res.json", help="Path to the config file"
)
parser.add_argument(
"--model", type=str, default="gpt-3.5-turbo", help="model name or path"
)
parser.add_argument("--shots", type=int, default=2, help="number of shots")
parser.add_argument("--ndoc", type=int, default=5, help="number of docs")
parser.add_argument("--pr", action="store_true", help="use cite PR")
parser.add_argument("--rouge", action="store_true", help="use rouge")
parser.add_argument("--temp", type=float, default=0.5, help="temperature")
parser.add_argument("--qa", action="store_true", help="eval qa")
parser.add_argument("--mauve", action="store_true", help="eval mauve")
parser.add_argument("--length", type=bool, default=True, help="eval length")
parser.add_argument("--claims", action="store_true", help="eval claims")
parser.add_argument("--qampari", type=str, default=False, help="eval qampari")
parser.add_argument(
"--dataset", type=str, default="data/asqa_eval_gtr_top100.json", help="dataset"
)
parser.add_argument(
"--demo", type=str, default="prompts/asqa_default.json", help="demo"
)
parser.add_argument("--doctype", type=str, default="text", help="demo")
parser.add_argument("--data_num", type=int, default=1000, help="num of data")
parser.add_argument(
"--mode",
type=str,
default="text",
help="mode-granularity: text, extraction or summary",
)
parser.add_argument("--k", type=float, default=1.5, help="coefficient of em")
parser.add_argument("--topk", type=int, default=2, help="topk")
args = parser.parse_args()
def score(data):
# pr = compute_autoais(data)
# p = pr["citation_prec"]
# r = pr["citation_rec"]
# em = compute_str_em(data)
# return p + r + args.k * em
return 1
# DATA LOADING
file_path = args.dataset
demo_path = args.demo
with open(file_path, "r", encoding="utf-8") as file:
dataset = json.load(file)
with open(demo_path, "r", encoding="utf-8") as file:
demo = json.load(file)
data_num = min(args.data_num, len(dataset))
llm_instruction = demo["one_sentence_instruction"]
query_inst = demo["query_instruction"]
shots = "\n\n".join(
NewALCEVanillaPrompt().load_data(
[demo["demos"][1], demo["demos"][3]],
"question",
answer=lambda data: remove_citations(
sentence("first")(data["answer"])["first"]
),
INST=lambda _: llm_instruction,
docs=lambda data: "".join(
ALCEDocPrompt().default_load_data(data["docs"][1:2])
),
)
)
documents = [
DocPrompt().load_data(
list(enumerate(data["docs"])),
Title=lambda data: data[1]["title"],
Passage=lambda data: data[1][args.mode],
)
for data in dataset
]
dataset = PromptDataset(
dataset,
"question",
"answer",
"answers",
"qa_pairs",
"claims",
docs=lambda data: ALCEDocPrompt().default_load_data(data["docs"][: args.ndoc]),
)[:data_num]
prompt = Prompt(
template="<shots><INST><question><ans><docs><span>\nAnswer:",
components={
"INST": "{INST}\n\n",
"shots": "{shots}\n",
"question": "Question:{question}\n\n",
"ans": "Prefix:{ans}\n\n",
"docs": "{docs}\n",
"span": "The highlighted spans are: \n{span}\n\n",
},
)
queryprompt = Prompt(
template="<INST><question><prev><ans>Please generate one query to help find relevent documents. If previous queries are provided, you shoud focus on an alternative perspective or subtopic different from the provided ones, enhancing diversity in retrieved documents. your query is:\n",
components={
"question": "Given the original question: {question}\n",
"ans": "The context is: {ans}\n",
"prev": "\nPrevious queries:\n{prev}\n\n",
"INST": "{INST}\n\n",
},
)
retriever_prompt = Prompt(template="<query>", components={"query": "{query}"})
query_generator = LLM(
model=args.model, prompt_maker=queryprompt, self_prompt={"INST": query_inst}
)
retriever_prompt = Prompt(template="<query>", components={"query": "{query}"})
eval = DefaultEvaluator(args)
ranker = Ranker(max_turn=3, iterative=True)
# ranker.set_eval('length', output = 'answer')
# ranker.new_eval('score', score , output = 'answer', docs = 'doc_cache', qa_pairs = 'qa_pairs')
ranker.new_eval("score", score, output="answer", docs="doc_cache")
# PIPELINE CONSTRUCTING
llm = LLM(
model=args.model,
prompt_maker=prompt,
self_prompt={"INST": llm_instruction, "shots": shots},
max_turn=30,
auto_cite=True,
auto_cite_from = 'span',
share_model_with=query_generator,
parallel=True,
)
pipeline = Pipeline(
save_path=args.save_path,
llm=llm,
module=[ranker, query_generator],
head_prompt_maker=prompt,
evaluator=eval,
dataset=dataset,
)
retriever = Retriever(
prompt_maker=retriever_prompt,
pipeline=pipeline,
retrieve_by="bm25",
topk=args.topk,
documents=documents,
)
query_generator.set_target(retriever, post_processing=make_as("query"))
query_generator.add_to_head("prev", sub=False)
retriever.set_target(llm, post_processing=segment)
llm.set_target(ranker, post_processing=make_as("answer"))
ranker.set_output(post_processing=lambda x: x["answer"], end=False)
ranker.add_to_head(
"ans", sub=True, process=lambda text: one_paragraph(text["answer"])
)
ranker.set_target(query_generator, post_processing=lambda x: {"ans": x["answer"]})
pipeline.set_initial_module(query_generator)
pipeline.set_data_keys(["question"])
attributer = AttributingModule(model=args.model)
attributer.connect_to(pipeline)
retriever.set_target(attributer, post_processing=make_as("docs"))
retriever.add_to_head("docs", sub=True)
attributer.set_target(llm)
# graph = PipelineGraph(pipeline=pipeline)
# html = graph.generate_html(results='results.json')
# graph.visualize()
# print(html)
# with open('pipeline_.html','w') as file:
# file.write(html)
# RUN PIPELINE
pipeline.run_on_dataset(datakeys=["question"], initial_module=query_generator)
|