metadata
title: README
emoji: π
colorFrom: gray
colorTo: gray
sdk: static
pinned: false
![](https://cdn-uploads.huggingface.co/production/uploads/6567e9af88bfbc261a34673d/riHfcszflP6BzNls2Phrf.png)
Want to contribute?
- π₯ For naming models, spaces, datasets, and metrics, employ kebab-case. Use lowercase letters, except for acronyms, which may be capitalized.
- π Please mind about making the models, spaces and datasets public or private. Metrics can (and have to) be public.
- π€ Do not expose passwords or tokens, use secrets.
Structure. (Click to expand)
Your metric should have the following structure:
_compute(references, predictions)
- Calls a metric engine, defined for example in the
seametrics
package, or other
- Calls a metric engine, defined for example in the
compute_from_payload(paylaod)
- Call the
module.compute
method internally after converting payload -> references, predictions
- Call the
- All the metric's parameters, such as iou_threshold, area_ranges, etc.. should be moved to the
__init__
method. - Output should look like this:
{ "ahoy_IR_b2_engine_3_6_0_49_gd81d3b63_oversea": { "overall": { "all": { "f1": 0.15967351103175614, "fn": 2923.0, "fp": 3666.0, "num_gt_ids": 10, "precision": 0.14585274930102515, "recall": 0.1763877148492533, "recognition_0.3": 0.1, "recognition_0.5": 0.1, "recognition_0.8": 0.1, "recognized_0.3": 1, "recognized_0.5": 1, "recognized_0.8": 1, "tp": 626.0 } }, "per_sequence": { "Sentry_2023_02_08_PROACT_CELADON_@6m_MOB_2023_02_08_12_51_49": { "all": { "f1": 0.15967351103175614, "fn": 2923.0, "fp": 3666.0, "num_gt_ids": 10, "precision": 0.14585274930102515, "recall": 0.1763877148492533, "recognition_0.3": 0.1, "recognition_0.5": 0.1, "recognition_0.8": 0.1, "recognized_0.3": 1, "recognized_0.5": 1, "recognized_0.8": 1, "tp": 626.0 } } } } }```
Looking for metrics?
- https://huggingface.co/spaces/SEA-AI/det-metrics
- Object detection metrics based on
pycocotools
and torchmetrics' Mean Avergae Precision.
- Object detection metrics based on
- https://huggingface.co/spaces/SEA-AI/box-metrics
- Bounding box statistics, including IOU, BEP (bottom edge proximity), and others.
- https://huggingface.co/spaces/SEA-AI/horizon-metrics
- Comparing horizons in an image w.r.t their midpoint and slope errors
- https://huggingface.co/spaces/SEA-AI/mot-metrics
- Multi-object-tracking metrics using
py-motmetrics
- Multi-object-tracking metrics using
- https://huggingface.co/spaces/SEA-AI/panoptic-quality
- Evaluating panoptic models