Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
import sys
|
4 |
sys.path.append('/home/user/app')
|
5 |
import streamlit as st
|
6 |
-
|
7 |
|
8 |
# Streamlit configuration
|
9 |
st.set_page_config(
|
@@ -14,300 +14,6 @@ st.set_page_config(
|
|
14 |
'About': "Infosys Financial Analyst v1.0"
|
15 |
}
|
16 |
)
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
# utils.py
|
21 |
-
"""
|
22 |
-
Financial Chatbot Utilities
|
23 |
-
Core functionality for RAG-based financial chatbot
|
24 |
-
"""
|
25 |
-
|
26 |
-
import os
|
27 |
-
import re
|
28 |
-
import nltk
|
29 |
-
from nltk.corpus import stopwords
|
30 |
-
from collections import deque
|
31 |
-
from typing import Tuple
|
32 |
-
import torch
|
33 |
-
import streamlit as st
|
34 |
-
|
35 |
-
# LangChain components
|
36 |
-
from langchain_community.document_loaders import PyPDFLoader
|
37 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
38 |
-
from langchain_community.vectorstores import Chroma
|
39 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
40 |
-
|
41 |
-
# Models and ML
|
42 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
43 |
-
from rank_bm25 import BM25Okapi
|
44 |
-
from sentence_transformers import CrossEncoder
|
45 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
46 |
-
|
47 |
-
# Initialize NLTK stopwords
|
48 |
-
nltk.download('stopwords')
|
49 |
-
stop_words = set(stopwords.words('english'))
|
50 |
-
# nltk.data.path.append('./nltk_data') # Point to local NLTK data
|
51 |
-
# stop_words = set(nltk.corpus.stopwords.words('english'))
|
52 |
-
|
53 |
-
# mount
|
54 |
-
import sys
|
55 |
-
sys.path.append('/mount/src/gen_ai_dev')
|
56 |
-
|
57 |
-
# Configuration
|
58 |
-
DATA_PATH = "./Infy financial report/"
|
59 |
-
DATA_FILES = ["INFY_2022_2023.pdf", "INFY_2023_2024.pdf"]
|
60 |
-
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
61 |
-
LLM_MODEL = "gpt2" # Or "distilgpt2" # Or "HuggingFaceH4/zephyr-7b-beta" or "microsoft/phi-2"
|
62 |
-
|
63 |
-
# Environment settings
|
64 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
65 |
-
os.environ["CHROMA_DISABLE_TELEMETRY"] = "true"
|
66 |
-
|
67 |
-
# Suppress specific warnings
|
68 |
-
import warnings
|
69 |
-
|
70 |
-
warnings.filterwarnings("ignore", message=".*oneDNN custom operations.*")
|
71 |
-
warnings.filterwarnings("ignore", message=".*cuBLAS factory.*")
|
72 |
-
|
73 |
-
|
74 |
-
# ------------------------------
|
75 |
-
# Load and Chunk Documents
|
76 |
-
# ------------------------------
|
77 |
-
def load_and_chunk_documents():
|
78 |
-
"""Load and split PDF documents into manageable chunks"""
|
79 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
80 |
-
chunk_size=500,
|
81 |
-
chunk_overlap=100,
|
82 |
-
separators=["\n\n", "\n", ".", " ", ""]
|
83 |
-
)
|
84 |
-
|
85 |
-
all_chunks = []
|
86 |
-
for file in DATA_FILES:
|
87 |
-
try:
|
88 |
-
loader = PyPDFLoader(os.path.join(DATA_PATH, file))
|
89 |
-
pages = loader.load()
|
90 |
-
all_chunks.extend(text_splitter.split_documents(pages))
|
91 |
-
except Exception as e:
|
92 |
-
print(f"Error loading {file}: {e}")
|
93 |
-
|
94 |
-
return all_chunks
|
95 |
-
|
96 |
-
|
97 |
-
# ------------------------------
|
98 |
-
# Vector Store and Search Setup
|
99 |
-
# ------------------------------
|
100 |
-
text_chunks = load_and_chunk_documents()
|
101 |
-
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
|
102 |
-
|
103 |
-
vector_db = Chroma.from_documents(
|
104 |
-
documents=text_chunks,
|
105 |
-
embedding=embeddings,
|
106 |
-
persist_directory="./chroma_db"
|
107 |
-
)
|
108 |
-
vector_db.persist()
|
109 |
-
|
110 |
-
# BM25 setup
|
111 |
-
bm25_corpus = [chunk.page_content for chunk in text_chunks]
|
112 |
-
bm25_tokenized = [doc.split() for doc in bm25_corpus]
|
113 |
-
bm25 = BM25Okapi(bm25_tokenized)
|
114 |
-
|
115 |
-
# Cross-encoder for re-ranking
|
116 |
-
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
117 |
-
|
118 |
-
|
119 |
-
# ------------------------------
|
120 |
-
# Conversation Memory
|
121 |
-
# ------------------------------
|
122 |
-
class ConversationMemory:
|
123 |
-
"""Stores recent conversation context"""
|
124 |
-
|
125 |
-
def __init__(self, max_size=5):
|
126 |
-
self.buffer = deque(maxlen=max_size)
|
127 |
-
|
128 |
-
def add_interaction(self, query: str, response: str) -> None:
|
129 |
-
self.buffer.append((query, response))
|
130 |
-
|
131 |
-
def get_context(self) -> str:
|
132 |
-
return "\n".join(
|
133 |
-
[f"Previous Q: {q}\nPrevious A: {r}" for q, r in self.buffer]
|
134 |
-
)
|
135 |
-
|
136 |
-
|
137 |
-
memory = ConversationMemory(max_size=3)
|
138 |
-
|
139 |
-
|
140 |
-
# ------------------------------
|
141 |
-
# Hybrid Retrieval System
|
142 |
-
# ------------------------------
|
143 |
-
def hybrid_retrieval(query: str, top_k: int = 5) -> str:
|
144 |
-
try:
|
145 |
-
# Semantic search
|
146 |
-
semantic_results = vector_db.similarity_search(query, k=top_k * 2)
|
147 |
-
print(f"\n\n[For Debug Only] Semantic Results: {semantic_results}")
|
148 |
-
|
149 |
-
# Keyword search
|
150 |
-
keyword_results = bm25.get_top_n(query.split(), bm25_corpus, n=top_k * 2)
|
151 |
-
print(f"\n\n[For Debug Only] Keyword Results: {keyword_results}\n\n")
|
152 |
-
|
153 |
-
# Combine and deduplicate results
|
154 |
-
combined = []
|
155 |
-
seen = set()
|
156 |
-
|
157 |
-
for doc in semantic_results:
|
158 |
-
content = doc.page_content
|
159 |
-
if content not in seen:
|
160 |
-
combined.append((content, "semantic"))
|
161 |
-
seen.add(content)
|
162 |
-
|
163 |
-
for doc in keyword_results:
|
164 |
-
if doc not in seen:
|
165 |
-
combined.append((doc, "keyword"))
|
166 |
-
seen.add(doc)
|
167 |
-
|
168 |
-
# Re-rank results using cross-encoder
|
169 |
-
pairs = [(query, content) for content, _ in combined]
|
170 |
-
scores = cross_encoder.predict(pairs)
|
171 |
-
|
172 |
-
# Sort by scores
|
173 |
-
sorted_results = sorted(
|
174 |
-
zip(combined, scores),
|
175 |
-
key=lambda x: x[1],
|
176 |
-
reverse=True
|
177 |
-
)
|
178 |
-
|
179 |
-
final_results = [f"[{source}] {content}" for (content, source), _ in sorted_results[:top_k]]
|
180 |
-
|
181 |
-
memory_context = memory.get_context()
|
182 |
-
if memory_context:
|
183 |
-
final_results.append(f"[memory] {memory_context}")
|
184 |
-
|
185 |
-
return "\n\n".join(final_results)
|
186 |
-
|
187 |
-
except Exception as e:
|
188 |
-
print(f"Retrieval error: {e}")
|
189 |
-
return ""
|
190 |
-
|
191 |
-
|
192 |
-
# ------------------------------
|
193 |
-
# Safety Guardrails
|
194 |
-
# ------------------------------
|
195 |
-
class SafetyGuard:
|
196 |
-
"""Validates input and filters output"""
|
197 |
-
|
198 |
-
def __init__(self):
|
199 |
-
# self.financial_terms = {
|
200 |
-
# 'revenue', 'profit', 'ebitda', 'balance', 'cash',
|
201 |
-
# 'income', 'fiscal', 'growth', 'margin', 'expense'
|
202 |
-
# }
|
203 |
-
self.blocked_topics = {
|
204 |
-
'politics', 'sports', 'entertainment', 'religion',
|
205 |
-
'medical', 'hypothetical', 'opinion', 'personal'
|
206 |
-
}
|
207 |
-
|
208 |
-
def validate_input(self, query: str) -> Tuple[bool, str]:
|
209 |
-
query_lower = query.lower()
|
210 |
-
# if not any(term in query_lower for term in self.financial_terms):
|
211 |
-
# return False, "Please ask financial questions."
|
212 |
-
if any(topic in query_lower for topic in self.blocked_topics):
|
213 |
-
return False, "I only discuss financial topics."
|
214 |
-
return True, ""
|
215 |
-
|
216 |
-
def filter_output(self, response: str) -> str:
|
217 |
-
phrases_to_remove = {
|
218 |
-
"I'm not sure", "I don't know", "maybe",
|
219 |
-
"possibly", "could be", "uncertain", "perhaps"
|
220 |
-
}
|
221 |
-
for phrase in phrases_to_remove:
|
222 |
-
response = response.replace(phrase, "")
|
223 |
-
|
224 |
-
sentences = re.split(r'[.!?]', response)
|
225 |
-
if len(sentences) > 2:
|
226 |
-
response = '. '.join(sentences[:2]) + '.'
|
227 |
-
|
228 |
-
return response.strip()
|
229 |
-
|
230 |
-
|
231 |
-
guard = SafetyGuard()
|
232 |
-
|
233 |
-
# ------------------------------
|
234 |
-
# LLM Initialization
|
235 |
-
# ------------------------------
|
236 |
-
try:
|
237 |
-
@st.cache_resource
|
238 |
-
def load_generator():
|
239 |
-
tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL)
|
240 |
-
model = AutoModelForCausalLM.from_pretrained(
|
241 |
-
LLM_MODEL,
|
242 |
-
device_map="cpu",
|
243 |
-
torch_dtype=torch.float16,
|
244 |
-
)
|
245 |
-
return pipeline(
|
246 |
-
"text-generation",
|
247 |
-
model=model,
|
248 |
-
tokenizer=tokenizer,
|
249 |
-
max_new_tokens=100,
|
250 |
-
do_sample=False,
|
251 |
-
temperature=0.7,
|
252 |
-
top_k=0,
|
253 |
-
top_p=1
|
254 |
-
)
|
255 |
-
generator = load_generator()
|
256 |
-
except Exception as e:
|
257 |
-
print(f"Error loading model: {e}")
|
258 |
-
raise
|
259 |
-
|
260 |
-
|
261 |
-
# ------------------------------
|
262 |
-
# Response Generation
|
263 |
-
# ------------------------------
|
264 |
-
def extract_final_response(full_response: str) -> str:
|
265 |
-
parts = full_response.split("<|im_start|>assistant")
|
266 |
-
if len(parts) > 1:
|
267 |
-
response = parts[-1].split("<|im_end|>")[0]
|
268 |
-
return re.sub(r'\s+', ' ', response).strip()
|
269 |
-
return full_response
|
270 |
-
|
271 |
-
|
272 |
-
def generate_answer(query: str) -> Tuple[str, float]:
|
273 |
-
try:
|
274 |
-
is_valid, msg = guard.validate_input(query)
|
275 |
-
if not is_valid:
|
276 |
-
return msg, 0.0
|
277 |
-
|
278 |
-
context = hybrid_retrieval(query)
|
279 |
-
vector_db.persist()
|
280 |
-
|
281 |
-
prompt = f"""<|im_start|>system
|
282 |
-
You are a financial analyst. Provide a brief answer using the context.
|
283 |
-
Context: {context}<|im_end|>
|
284 |
-
<|im_start|>user
|
285 |
-
{query}<|im_end|>
|
286 |
-
<|im_start|>assistant
|
287 |
-
Answer:"""
|
288 |
-
|
289 |
-
print(f"\n\n[For Debug Only] Prompt: {prompt}\n\n")
|
290 |
-
response = generator(prompt)[0]['generated_text']
|
291 |
-
print(f"\n\n[For Debug Only] response: {response}\n\n")
|
292 |
-
|
293 |
-
clean_response = extract_final_response(response)
|
294 |
-
clean_response = guard.filter_output(clean_response)
|
295 |
-
print(f"\n\n[For Debug Only] clean_response: {clean_response}\n\n")
|
296 |
-
|
297 |
-
query_embed = embeddings.embed_query(query)
|
298 |
-
response_embed = embeddings.embed_query(clean_response)
|
299 |
-
|
300 |
-
confidence = cosine_similarity([query_embed], [response_embed])[0][0]
|
301 |
-
print(f"\n\n[For Debug Only] confidence: {confidence}\n\n")
|
302 |
-
|
303 |
-
memory.add_interaction(query, clean_response)
|
304 |
-
|
305 |
-
print(f"\n\n[For Debug Only] I'm Done \n\n")
|
306 |
-
return clean_response, round(confidence, 2)
|
307 |
-
|
308 |
-
except Exception as e:
|
309 |
-
return f"Error processing request: {e}", 0.0
|
310 |
-
|
311 |
|
312 |
|
313 |
def main():
|
@@ -329,4 +35,4 @@ def main():
|
|
329 |
st.markdown(f"{confidence * 100:.1f}% relevance confidence")
|
330 |
|
331 |
if __name__ == "__main__":
|
332 |
-
main()
|
|
|
3 |
import sys
|
4 |
sys.path.append('/home/user/app')
|
5 |
import streamlit as st
|
6 |
+
from utils import generate_answer
|
7 |
|
8 |
# Streamlit configuration
|
9 |
st.set_page_config(
|
|
|
14 |
'About': "Infosys Financial Analyst v1.0"
|
15 |
}
|
16 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
def main():
|
|
|
35 |
st.markdown(f"{confidence * 100:.1f}% relevance confidence")
|
36 |
|
37 |
if __name__ == "__main__":
|
38 |
+
main()
|