Spaces:
Sleeping
Sleeping
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# utils.py
|
2 |
+
"""
|
3 |
+
Financial Chatbot Utilities
|
4 |
+
Core functionality for RAG-based financial chatbot
|
5 |
+
"""
|
6 |
+
|
7 |
+
import os
|
8 |
+
import re
|
9 |
+
import nltk
|
10 |
+
from nltk.corpus import stopwords
|
11 |
+
from collections import deque
|
12 |
+
from typing import Tuple
|
13 |
+
import torch
|
14 |
+
import streamlit as st
|
15 |
+
|
16 |
+
# LangChain components
|
17 |
+
from langchain_community.document_loaders import PyPDFLoader
|
18 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
19 |
+
from langchain_community.vectorstores import Chroma
|
20 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
21 |
+
|
22 |
+
# Models and ML
|
23 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
24 |
+
from rank_bm25 import BM25Okapi
|
25 |
+
from sentence_transformers import CrossEncoder
|
26 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
27 |
+
|
28 |
+
# Initialize NLTK stopwords
|
29 |
+
nltk.download('stopwords')
|
30 |
+
stop_words = set(stopwords.words('english'))
|
31 |
+
# nltk.data.path.append('./nltk_data') # Point to local NLTK data
|
32 |
+
# stop_words = set(nltk.corpus.stopwords.words('english'))
|
33 |
+
|
34 |
+
# mount
|
35 |
+
import sys
|
36 |
+
sys.path.append('/mount/src/gen_ai_dev')
|
37 |
+
|
38 |
+
# Configuration
|
39 |
+
DATA_PATH = "./Infy financial report/"
|
40 |
+
DATA_FILES = ["INFY_2022_2023.pdf", "INFY_2023_2024.pdf"]
|
41 |
+
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
42 |
+
LLM_MODEL = "gpt2" # Or "distilgpt2" # Or "HuggingFaceH4/zephyr-7b-beta" or "microsoft/phi-2"
|
43 |
+
|
44 |
+
# Environment settings
|
45 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
46 |
+
os.environ["CHROMA_DISABLE_TELEMETRY"] = "true"
|
47 |
+
|
48 |
+
# Suppress specific warnings
|
49 |
+
import warnings
|
50 |
+
|
51 |
+
warnings.filterwarnings("ignore", message=".*oneDNN custom operations.*")
|
52 |
+
warnings.filterwarnings("ignore", message=".*cuBLAS factory.*")
|
53 |
+
|
54 |
+
|
55 |
+
# ------------------------------
|
56 |
+
# Load and Chunk Documents
|
57 |
+
# ------------------------------
|
58 |
+
def load_and_chunk_documents():
|
59 |
+
"""Load and split PDF documents into manageable chunks"""
|
60 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
61 |
+
chunk_size=500,
|
62 |
+
chunk_overlap=100,
|
63 |
+
separators=["\n\n", "\n", ".", " ", ""]
|
64 |
+
)
|
65 |
+
|
66 |
+
all_chunks = []
|
67 |
+
for file in DATA_FILES:
|
68 |
+
try:
|
69 |
+
loader = PyPDFLoader(os.path.join(DATA_PATH, file))
|
70 |
+
pages = loader.load()
|
71 |
+
all_chunks.extend(text_splitter.split_documents(pages))
|
72 |
+
except Exception as e:
|
73 |
+
print(f"Error loading {file}: {e}")
|
74 |
+
|
75 |
+
return all_chunks
|
76 |
+
|
77 |
+
|
78 |
+
# ------------------------------
|
79 |
+
# Vector Store and Search Setup
|
80 |
+
# ------------------------------
|
81 |
+
text_chunks = load_and_chunk_documents()
|
82 |
+
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
|
83 |
+
|
84 |
+
vector_db = Chroma.from_documents(
|
85 |
+
documents=text_chunks,
|
86 |
+
embedding=embeddings,
|
87 |
+
persist_directory="./chroma_db"
|
88 |
+
)
|
89 |
+
vector_db.persist()
|
90 |
+
|
91 |
+
# BM25 setup
|
92 |
+
bm25_corpus = [chunk.page_content for chunk in text_chunks]
|
93 |
+
bm25_tokenized = [doc.split() for doc in bm25_corpus]
|
94 |
+
bm25 = BM25Okapi(bm25_tokenized)
|
95 |
+
|
96 |
+
# Cross-encoder for re-ranking
|
97 |
+
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
98 |
+
|
99 |
+
|
100 |
+
# ------------------------------
|
101 |
+
# Conversation Memory
|
102 |
+
# ------------------------------
|
103 |
+
class ConversationMemory:
|
104 |
+
"""Stores recent conversation context"""
|
105 |
+
|
106 |
+
def __init__(self, max_size=5):
|
107 |
+
self.buffer = deque(maxlen=max_size)
|
108 |
+
|
109 |
+
def add_interaction(self, query: str, response: str) -> None:
|
110 |
+
self.buffer.append((query, response))
|
111 |
+
|
112 |
+
def get_context(self) -> str:
|
113 |
+
return "\n".join(
|
114 |
+
[f"Previous Q: {q}\nPrevious A: {r}" for q, r in self.buffer]
|
115 |
+
)
|
116 |
+
|
117 |
+
|
118 |
+
memory = ConversationMemory(max_size=3)
|
119 |
+
|
120 |
+
|
121 |
+
# ------------------------------
|
122 |
+
# Hybrid Retrieval System
|
123 |
+
# ------------------------------
|
124 |
+
def hybrid_retrieval(query: str, top_k: int = 5) -> str:
|
125 |
+
try:
|
126 |
+
# Semantic search
|
127 |
+
semantic_results = vector_db.similarity_search(query, k=top_k * 2)
|
128 |
+
print(f"\n\n[For Debug Only] Semantic Results: {semantic_results}")
|
129 |
+
|
130 |
+
# Keyword search
|
131 |
+
keyword_results = bm25.get_top_n(query.split(), bm25_corpus, n=top_k * 2)
|
132 |
+
print(f"\n\n[For Debug Only] Keyword Results: {keyword_results}\n\n")
|
133 |
+
|
134 |
+
# Combine and deduplicate results
|
135 |
+
combined = []
|
136 |
+
seen = set()
|
137 |
+
|
138 |
+
for doc in semantic_results:
|
139 |
+
content = doc.page_content
|
140 |
+
if content not in seen:
|
141 |
+
combined.append((content, "semantic"))
|
142 |
+
seen.add(content)
|
143 |
+
|
144 |
+
for doc in keyword_results:
|
145 |
+
if doc not in seen:
|
146 |
+
combined.append((doc, "keyword"))
|
147 |
+
seen.add(doc)
|
148 |
+
|
149 |
+
# Re-rank results using cross-encoder
|
150 |
+
pairs = [(query, content) for content, _ in combined]
|
151 |
+
scores = cross_encoder.predict(pairs)
|
152 |
+
|
153 |
+
# Sort by scores
|
154 |
+
sorted_results = sorted(
|
155 |
+
zip(combined, scores),
|
156 |
+
key=lambda x: x[1],
|
157 |
+
reverse=True
|
158 |
+
)
|
159 |
+
|
160 |
+
final_results = [f"[{source}] {content}" for (content, source), _ in sorted_results[:top_k]]
|
161 |
+
|
162 |
+
memory_context = memory.get_context()
|
163 |
+
if memory_context:
|
164 |
+
final_results.append(f"[memory] {memory_context}")
|
165 |
+
|
166 |
+
return "\n\n".join(final_results)
|
167 |
+
|
168 |
+
except Exception as e:
|
169 |
+
print(f"Retrieval error: {e}")
|
170 |
+
return ""
|
171 |
+
|
172 |
+
|
173 |
+
# ------------------------------
|
174 |
+
# Safety Guardrails
|
175 |
+
# ------------------------------
|
176 |
+
class SafetyGuard:
|
177 |
+
"""Validates input and filters output"""
|
178 |
+
|
179 |
+
def __init__(self):
|
180 |
+
# self.financial_terms = {
|
181 |
+
# 'revenue', 'profit', 'ebitda', 'balance', 'cash',
|
182 |
+
# 'income', 'fiscal', 'growth', 'margin', 'expense'
|
183 |
+
# }
|
184 |
+
self.blocked_topics = {
|
185 |
+
'politics', 'sports', 'entertainment', 'religion',
|
186 |
+
'medical', 'hypothetical', 'opinion', 'personal'
|
187 |
+
}
|
188 |
+
|
189 |
+
def validate_input(self, query: str) -> Tuple[bool, str]:
|
190 |
+
query_lower = query.lower()
|
191 |
+
# if not any(term in query_lower for term in self.financial_terms):
|
192 |
+
# return False, "Please ask financial questions."
|
193 |
+
if any(topic in query_lower for topic in self.blocked_topics):
|
194 |
+
return False, "I only discuss financial topics."
|
195 |
+
return True, ""
|
196 |
+
|
197 |
+
def filter_output(self, response: str) -> str:
|
198 |
+
phrases_to_remove = {
|
199 |
+
"I'm not sure", "I don't know", "maybe",
|
200 |
+
"possibly", "could be", "uncertain", "perhaps"
|
201 |
+
}
|
202 |
+
for phrase in phrases_to_remove:
|
203 |
+
response = response.replace(phrase, "")
|
204 |
+
|
205 |
+
sentences = re.split(r'[.!?]', response)
|
206 |
+
if len(sentences) > 2:
|
207 |
+
response = '. '.join(sentences[:2]) + '.'
|
208 |
+
|
209 |
+
return response.strip()
|
210 |
+
|
211 |
+
|
212 |
+
guard = SafetyGuard()
|
213 |
+
|
214 |
+
# ------------------------------
|
215 |
+
# LLM Initialization
|
216 |
+
# ------------------------------
|
217 |
+
try:
|
218 |
+
@st.cache_resource
|
219 |
+
def load_generator():
|
220 |
+
tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL)
|
221 |
+
model = AutoModelForCausalLM.from_pretrained(
|
222 |
+
LLM_MODEL,
|
223 |
+
device_map="cpu",
|
224 |
+
torch_dtype=torch.float16,
|
225 |
+
)
|
226 |
+
return pipeline(
|
227 |
+
"text-generation",
|
228 |
+
model=model,
|
229 |
+
tokenizer=tokenizer,
|
230 |
+
max_new_tokens=100,
|
231 |
+
do_sample=False,
|
232 |
+
temperature=0.7,
|
233 |
+
top_k=0,
|
234 |
+
top_p=1
|
235 |
+
)
|
236 |
+
generator = load_generator()
|
237 |
+
except Exception as e:
|
238 |
+
print(f"Error loading model: {e}")
|
239 |
+
raise
|
240 |
+
|
241 |
+
|
242 |
+
# ------------------------------
|
243 |
+
# Response Generation
|
244 |
+
# ------------------------------
|
245 |
+
def extract_final_response(full_response: str) -> str:
|
246 |
+
parts = full_response.split("<|im_start|>assistant")
|
247 |
+
if len(parts) > 1:
|
248 |
+
response = parts[-1].split("<|im_end|>")[0]
|
249 |
+
return re.sub(r'\s+', ' ', response).strip()
|
250 |
+
return full_response
|
251 |
+
|
252 |
+
|
253 |
+
def generate_answer(query: str) -> Tuple[str, float]:
|
254 |
+
try:
|
255 |
+
is_valid, msg = guard.validate_input(query)
|
256 |
+
if not is_valid:
|
257 |
+
return msg, 0.0
|
258 |
+
|
259 |
+
context = hybrid_retrieval(query)
|
260 |
+
vector_db.persist()
|
261 |
+
|
262 |
+
prompt = f"""<|im_start|>system
|
263 |
+
You are a financial analyst. Provide a brief answer using the context.
|
264 |
+
Context: {context}<|im_end|>
|
265 |
+
<|im_start|>user
|
266 |
+
{query}<|im_end|>
|
267 |
+
<|im_start|>assistant
|
268 |
+
Answer:"""
|
269 |
+
|
270 |
+
print(f"\n\n[For Debug Only] Prompt: {prompt}\n\n")
|
271 |
+
response = generator(prompt)[0]['generated_text']
|
272 |
+
print(f"\n\n[For Debug Only] response: {response}\n\n")
|
273 |
+
|
274 |
+
clean_response = extract_final_response(response)
|
275 |
+
clean_response = guard.filter_output(clean_response)
|
276 |
+
print(f"\n\n[For Debug Only] clean_response: {clean_response}\n\n")
|
277 |
+
|
278 |
+
query_embed = embeddings.embed_query(query)
|
279 |
+
response_embed = embeddings.embed_query(clean_response)
|
280 |
+
|
281 |
+
confidence = cosine_similarity([query_embed], [response_embed])[0][0]
|
282 |
+
print(f"\n\n[For Debug Only] confidence: {confidence}\n\n")
|
283 |
+
|
284 |
+
memory.add_interaction(query, clean_response)
|
285 |
+
|
286 |
+
print(f"\n\n[For Debug Only] I'm Done \n\n")
|
287 |
+
return clean_response, round(confidence, 2)
|
288 |
+
|
289 |
+
except Exception as e:
|
290 |
+
return f"Error processing request: {e}", 0.0
|