Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import time | |
from diffusers import DiffusionPipeline, AutoencoderTiny | |
from diffusers.models.attention_processor import AttnProcessor2_0 | |
from custom_pipeline import FluxWithCFGPipeline | |
import asyncio | |
# Constants | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
DEFAULT_WIDTH = 1024 | |
DEFAULT_HEIGHT = 1024 | |
DEFAULT_INFERENCE_STEPS = 1 | |
# Device and model setup | |
dtype = torch.float16 | |
pipe = FluxWithCFGPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype | |
) | |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype) | |
pipe.to("cuda") | |
pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better") | |
pipe.set_adapters(["better"], adapter_weights=[1.0]) | |
pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0) | |
pipe.unload_lora_weights() | |
pipe.unet.to(memory_format=torch.channels_last) | |
pipe.vae.to(memory_format=torch.channels_last) | |
pipe.enable_xformers_memory_efficient_attention() | |
torch.cuda.empty_cache() | |
# Inference function | |
def generate_image(prompt, seed=24, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(int(float(seed))) | |
start_time = time.time() | |
# Initialize static inputs for CUDA graph | |
static_latents = torch.randn((1, 4, height // 8, width // 8), dtype=dtype, device="cuda") | |
static_prompt_embeds = torch.randn((2, 77, 768), dtype=dtype, device="cuda") # Adjust dimensions as needed | |
static_pooled_prompt_embeds = torch.randn((2, 768), dtype=dtype, device="cuda") # Adjust dimensions as needed | |
static_text_ids = torch.tensor([[[1, 2, 3]]], dtype=torch.int32, device="cuda") | |
static_latent_image_ids = torch.tensor([1], dtype=torch.int64, device="cuda") | |
static_timestep = torch.tensor([999], dtype=dtype, device="cuda") | |
# Warmup | |
s = torch.cuda.Stream() | |
s.wait_stream(torch.cuda.current_stream()) | |
with torch.cuda.stream(s): | |
for _ in range(3): | |
_ = pipe.transformer( | |
hidden_states=static_latents, | |
timestep=static_timestep / 1000, | |
guidance=None, | |
pooled_projections=static_pooled_prompt_embeds, | |
encoder_hidden_states=static_prompt_embeds, | |
txt_ids=static_text_ids, | |
img_ids=static_latent_image_ids, | |
joint_attention_kwargs=pipe.joint_attention_kwargs, | |
return_dict=False, | |
) | |
torch.cuda.current_stream().wait_stream(s) | |
# Capture CUDA Graph | |
g = torch.cuda.CUDAGraph() | |
with torch.cuda.graph(g): | |
static_noise_pred = pipe.transformer( | |
hidden_states=static_latents, | |
timestep=static_timestep / 1000, | |
guidance=None, | |
pooled_projections=static_pooled_prompt_embeds, | |
encoder_hidden_states=static_prompt_embeds, | |
txt_ids=static_text_ids, | |
img_ids=static_latent_image_ids, | |
joint_attention_kwargs=pipe.joint_attention_kwargs, | |
return_dict=False, | |
)[0] | |
static_latents_out = pipe.scheduler.step(static_noise_pred, static_timestep, static_latents, return_dict=False)[0] | |
static_output = pipe._decode_latents_to_image(static_latents_out, height, width, "pil") | |
# Graph-based generation function | |
def generate_with_graph(latents, prompt_embeds, pooled_prompt_embeds, text_ids, latent_image_ids, timestep): | |
static_latents.copy_(latents) | |
static_prompt_embeds.copy_(prompt_embeds) | |
static_pooled_prompt_embeds.copy_(pooled_prompt_embeds) | |
static_text_ids.copy_(text_ids) | |
static_latent_image_ids.copy_(latent_image_ids) | |
static_timestep.copy_(timestep) | |
g.replay() | |
return static_output | |
# Only generate the last image in the sequence | |
img = pipe.generate_images( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
generate_with_graph=generate_with_graph | |
) | |
latency = f"Latency: {(time.time()-start_time):.2f} seconds" | |
return img, seed, latency | |
# Example prompts | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cute white cat holding a sign that says hello world", | |
"an anime illustration of Steve Jobs", | |
"Create image of Modern house in minecraft style", | |
"photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair", | |
"Selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.", | |
"Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.", | |
] | |
# --- Gradio UI --- | |
with gr.Blocks() as demo: | |
with gr.Column(elem_id="app-container"): | |
gr.Markdown("# π¨ Realtime FLUX Image Generator") | |
gr.Markdown("Generate stunning images in real-time with Modified Flux.Schnell pipeline.") | |
gr.Markdown("<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>") | |
with gr.Row(): | |
with gr.Column(scale=2.5): | |
result = gr.Image(label="Generated Image", show_label=False, interactive=False) | |
with gr.Column(scale=1): | |
prompt = gr.Text( | |
label="Prompt", | |
placeholder="Describe the image you want to generate...", | |
lines=3, | |
show_label=False, | |
container=False, | |
) | |
generateBtn = gr.Button("πΌοΈ Generate Image") | |
enhanceBtn = gr.Button("π Enhance Image") | |
with gr.Column("Advanced Options"): | |
with gr.Row(): | |
realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False) | |
latency = gr.Text(label="Latency") | |
with gr.Row(): | |
seed = gr.Number(label="Seed", value=42) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH) | |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT) | |
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS) | |
with gr.Row(): | |
gr.Markdown("### π Inspiration Gallery") | |
with gr.Row(): | |
gr.Examples( | |
examples=examples, | |
fn=generate_image, | |
inputs=[prompt], | |
outputs=[result, seed, latency], | |
cache_examples="lazy" | |
) | |
enhanceBtn.click( | |
fn=generate_image, | |
inputs=[prompt, seed, width, height], | |
outputs=[result, seed, latency], | |
show_progress="full", | |
queue=False, | |
concurrency_limit=None | |
) | |
generateBtn.click( | |
fn=generate_image, | |
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], | |
outputs=[result, seed, latency], | |
show_progress="full", | |
api_name="RealtimeFlux", | |
queue=False | |
) | |
def update_ui(realtime_enabled): | |
return { | |
prompt: gr.update(interactive=True), | |
generateBtn: gr.update(visible=not realtime_enabled) | |
} | |
realtime.change( | |
fn=update_ui, | |
inputs=[realtime], | |
outputs=[prompt, generateBtn], | |
queue=False, | |
concurrency_limit=None | |
) | |
async def realtime_generation(*args): | |
if args[0]: # If realtime is enabled | |
loop = asyncio.get_event_loop() | |
result = await loop.run_in_executor(None, next, generate_image(*args[1:])) | |
return result | |
prompt.submit( | |
fn=generate_image, | |
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], | |
outputs=[result, seed, latency], | |
show_progress="full", | |
queue=False, | |
concurrency_limit=None | |
) | |
for component in [prompt, width, height, num_inference_steps]: | |
component.input( | |
fn=realtime_generation, | |
inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps], | |
outputs=[result, seed, latency], | |
show_progress="hidden", | |
trigger_mode="always_last", | |
queue=True, | |
concurrency_limit=None | |
) | |
# Launch the app | |
demo.launch() |