ImageClassifier / main.py
Rupesx007's picture
uploaded the main.py and the trained model
ff941e1 verified
raw
history blame
1.46 kB
import streamlit as st
from PIL import Image
import tensorflow as tf
import numpy as np
import io
# Load your trained model
custom_objects = {'BatchNormalization': tf.keras.layers.BatchNormalization}
# model = tf.keras.models.load_model('ResNet152V2.h5')
# Define class labels of the animals
class_labels = ['Butterfly', 'Cat', 'Cow', 'Dog', 'Hen']
# Streamlit App
st.title("Image Classification App")
# Upload image through Streamlit interface
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
#
# if uploaded_file is not None:
# # Read the bytes of the uploaded file
# image_bytes = uploaded_file.read()
#
# # Convert the bytes to a PIL Image
# image = Image.open(io.BytesIO(image_bytes))
# st.image(image, caption="Uploaded Image", use_column_width=True)
#
# # Preprocess the image for the model
# image = image.resize((256, 256)) # Adjust size as needed
# image_array = tf.keras.preprocessing.image.img_to_array(image)
# image_array = np.expand_dims(image_array, axis=0)
# image_array /= 255.0 # Normalize the pixel values to be between 0 and 1
#
# # Make predictions
# predictions = model.predict(image_array)
# predicted_class = np.argmax(predictions[0])
# confidence = predictions[0][predicted_class]
#
# # Display the predicted class and confidence
# st.write("Prediction:")
# st.write(f"Class: {class_labels[predicted_class]}, Confidence: {confidence:.2f}")