File size: 1,459 Bytes
ff941e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import streamlit as st
from PIL import Image
import tensorflow as tf
import numpy as np
import io

# Load your trained model
custom_objects = {'BatchNormalization': tf.keras.layers.BatchNormalization}
# model = tf.keras.models.load_model('ResNet152V2.h5')


# Define class labels of the animals
class_labels = ['Butterfly', 'Cat', 'Cow', 'Dog', 'Hen']

# Streamlit App
st.title("Image Classification App")

# Upload image through Streamlit interface
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
#
# if uploaded_file is not None:
#     # Read the bytes of the uploaded file
#     image_bytes = uploaded_file.read()
#
#     # Convert the bytes to a PIL Image
#     image = Image.open(io.BytesIO(image_bytes))
#     st.image(image, caption="Uploaded Image", use_column_width=True)
#
#     # Preprocess the image for the model
#     image = image.resize((256, 256))  # Adjust size as needed
#     image_array = tf.keras.preprocessing.image.img_to_array(image)
#     image_array = np.expand_dims(image_array, axis=0)
#     image_array /= 255.0  # Normalize the pixel values to be between 0 and 1
#
#     # Make predictions
#     predictions = model.predict(image_array)
#     predicted_class = np.argmax(predictions[0])
#     confidence = predictions[0][predicted_class]
#
#     # Display the predicted class and confidence
#     st.write("Prediction:")
#     st.write(f"Class: {class_labels[predicted_class]}, Confidence: {confidence:.2f}")