Spaces:
Sleeping
Sleeping
File size: 1,459 Bytes
ff941e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import streamlit as st
from PIL import Image
import tensorflow as tf
import numpy as np
import io
# Load your trained model
custom_objects = {'BatchNormalization': tf.keras.layers.BatchNormalization}
# model = tf.keras.models.load_model('ResNet152V2.h5')
# Define class labels of the animals
class_labels = ['Butterfly', 'Cat', 'Cow', 'Dog', 'Hen']
# Streamlit App
st.title("Image Classification App")
# Upload image through Streamlit interface
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
#
# if uploaded_file is not None:
# # Read the bytes of the uploaded file
# image_bytes = uploaded_file.read()
#
# # Convert the bytes to a PIL Image
# image = Image.open(io.BytesIO(image_bytes))
# st.image(image, caption="Uploaded Image", use_column_width=True)
#
# # Preprocess the image for the model
# image = image.resize((256, 256)) # Adjust size as needed
# image_array = tf.keras.preprocessing.image.img_to_array(image)
# image_array = np.expand_dims(image_array, axis=0)
# image_array /= 255.0 # Normalize the pixel values to be between 0 and 1
#
# # Make predictions
# predictions = model.predict(image_array)
# predicted_class = np.argmax(predictions[0])
# confidence = predictions[0][predicted_class]
#
# # Display the predicted class and confidence
# st.write("Prediction:")
# st.write(f"Class: {class_labels[predicted_class]}, Confidence: {confidence:.2f}")
|