Spaces:
Sleeping
Sleeping
import math | |
import random | |
import numpy as np | |
from tqdm import tqdm | |
import cv2 | |
from PIL import Image | |
import torch | |
import torch.nn.functional as F | |
from .submodular_vit_torch import MultiModalSubModularExplanation | |
class MultiModalSubModularExplanationEfficientPlus(MultiModalSubModularExplanation): | |
def __init__(self, | |
model, | |
semantic_feature, | |
preproccessing_function, | |
k = 40, | |
lambda1 = 1.0, | |
lambda2 = 1.0, | |
lambda3 = 1.0, | |
lambda4 = 1.0, | |
device = "cuda", | |
pending_samples = 8): | |
super(MultiModalSubModularExplanationEfficientPlus, self).__init__( | |
k = k, | |
model = model, | |
semantic_feature = semantic_feature, | |
preproccessing_function = preproccessing_function, | |
lambda1 = lambda1, | |
lambda2 = lambda2, | |
lambda3 = lambda3, | |
lambda4 = lambda4, | |
device = device) | |
# Parameters of the submodular | |
self.pending_samples = pending_samples | |
def evaluation_maximun_sample(self, | |
main_set, | |
decrease_set, | |
candidate_set, | |
partition_image_set): | |
""" | |
Given a subset, return a best sample index | |
""" | |
sub_index_sets = [] | |
for candidate_ in candidate_set: | |
sub_index_sets.append( | |
np.concatenate((main_set, np.array([candidate_]))).astype(int)) | |
sub_index_sets_decrease = [] | |
for candidate_ in candidate_set: | |
sub_index_sets_decrease.append( | |
np.concatenate((decrease_set, np.array([candidate_]))).astype(int)) | |
# merge images / 组合图像 | |
sub_images = torch.stack([ | |
self.preproccessing_function( | |
self.merge_image(sub_index_set, partition_image_set) | |
) for sub_index_set in sub_index_sets]) | |
batch_input_images = sub_images.to(self.device) | |
with torch.no_grad(): | |
# 2. Effectiveness Score | |
score_effectiveness = self.proccess_compute_effectiveness_score(sub_index_sets) | |
score_effectiveness_decrease = self.proccess_compute_effectiveness_score(sub_index_sets_decrease) | |
# 3. Consistency Score | |
score_consistency = self.proccess_compute_consistency_score(batch_input_images) | |
# 1. Confidence Score | |
score_confidence = self.proccess_compute_confidence_score() | |
# 4. Collaboration Score | |
sub_images_reverse = torch.stack([ | |
self.preproccessing_function( | |
self.org_img - self.merge_image(sub_index_set, partition_image_set) | |
) for sub_index_set in sub_index_sets]) | |
batch_input_images_reverse = sub_images_reverse.to(self.device) | |
score_collaboration = 1 - self.proccess_compute_consistency_score(batch_input_images_reverse) | |
# submodular score | |
# smdl_score = self.lambda1 * score_confidence + self.lambda2 * score_effectiveness + self.lambda3 * score_consistency + self.lambda4 * score_collaborations | |
smdl_score = self.lambda1 * score_confidence + self.lambda2 * score_effectiveness + self.lambda3 * score_consistency + self.lambda4 * score_collaboration | |
arg_max_index = smdl_score.argmax().cpu().item() | |
# if self.lambda1 != 0: | |
self.saved_json_file["confidence_score_increase"].append(score_confidence[arg_max_index].cpu().item()) | |
self.saved_json_file["effectiveness_score_increase"].append(score_effectiveness[arg_max_index].cpu().item()) | |
self.saved_json_file["consistency_score_increase"].append(score_consistency[arg_max_index].cpu().item()) | |
self.saved_json_file["collaboration_score_increase"].append(score_collaboration[arg_max_index].cpu().item()) | |
self.saved_json_file["smdl_score"].append(smdl_score[arg_max_index].cpu().item()) | |
if len(candidate_set) > self.pending_samples: | |
smdl_score_decrease = self.lambda1 * score_confidence + self.lambda2 * score_effectiveness_decrease + self.lambda3 * score_consistency + self.lambda4 * score_collaboration | |
# Select the sample with the worst score as the negative sample estimate | |
negtive_sampels_indexes = smdl_score_decrease.topk(self.pending_samples, largest = False).indices.cpu().numpy() | |
if arg_max_index in negtive_sampels_indexes: | |
negtive_sampels_indexes = negtive_sampels_indexes.tolist() | |
negtive_sampels_indexes.remove(arg_max_index) | |
negtive_sampels_indexes = np.array(negtive_sampels_indexes) | |
sub_index_negtive_sets = np.array(sub_index_sets_decrease)[negtive_sampels_indexes] | |
# merge images / 组合图像 | |
sub_images_decrease = torch.stack([ | |
self.preproccessing_function( | |
self.merge_image(sub_index_set, partition_image_set) | |
) for sub_index_set in sub_index_negtive_sets]) | |
sub_images_decrease_reverse = torch.stack([ | |
self.preproccessing_function( | |
self.org_img - self.merge_image(sub_index_set, partition_image_set) | |
) for sub_index_set in sub_index_negtive_sets]) | |
# 2. Effectiveness Score | |
score_effectiveness_decrease_ = score_effectiveness_decrease[negtive_sampels_indexes] | |
# 3. Consistency Score | |
score_consistency_decrease = self.proccess_compute_consistency_score(sub_images_decrease.to(self.device)) | |
# 1. Confidence Score | |
score_confidence_decrease = self.proccess_compute_confidence_score() | |
# 4. Collaboration Score | |
score_collaboration_decrease = 1 - self.proccess_compute_consistency_score(sub_images_decrease_reverse.to(self.device)) | |
smdl_score_decrease = self.lambda1 * score_confidence_decrease + self.lambda2 * score_effectiveness_decrease_ + self.lambda3 * score_consistency_decrease + self.lambda4 * score_collaboration_decrease | |
arg_min_index = smdl_score_decrease.argmin().cpu().item() | |
decrease_set = sub_index_negtive_sets[arg_min_index] | |
self.saved_json_file["confidence_score_decrease"].append(score_confidence_decrease[arg_min_index].cpu().item()) | |
self.saved_json_file["effectiveness_score_decrease"].append(score_effectiveness_decrease_[arg_min_index].cpu().item()) | |
self.saved_json_file["consistency_score_decrease"].append(1-score_collaboration_decrease[arg_min_index].cpu().item()) | |
self.saved_json_file["collaboration_score_decrease"].append(1-score_consistency_decrease[arg_min_index].cpu().item()) | |
return sub_index_sets[arg_max_index], decrease_set | |
def save_file_init(self): | |
self.saved_json_file = {} | |
self.saved_json_file["sub-k"] = self.k | |
self.saved_json_file["confidence_score"] = [] | |
self.saved_json_file["effectiveness_score"] = [] | |
self.saved_json_file["consistency_score"] = [] | |
self.saved_json_file["collaboration_score"] = [] | |
self.saved_json_file["confidence_score_increase"] = [] | |
self.saved_json_file["effectiveness_score_increase"] = [] | |
self.saved_json_file["consistency_score_increase"] = [] | |
self.saved_json_file["collaboration_score_increase"] = [] | |
self.saved_json_file["confidence_score_decrease"] = [] | |
self.saved_json_file["effectiveness_score_decrease"] = [] | |
self.saved_json_file["consistency_score_decrease"] = [] | |
self.saved_json_file["collaboration_score_decrease"] = [] | |
self.saved_json_file["smdl_score"] = [] | |
self.saved_json_file["lambda1"] = self.lambda1 | |
self.saved_json_file["lambda2"] = self.lambda2 | |
self.saved_json_file["lambda3"] = self.lambda3 | |
self.saved_json_file["lambda4"] = self.lambda4 | |
def get_merge_set(self, partition): | |
""" | |
""" | |
Subset = np.array([]) | |
Subset_decrease = np.array([]) | |
indexes = np.arange(len(partition)) | |
# First calculate the similarity of each element to facilitate calculation of effectiveness score. | |
self.calculate_distance_of_each_element(partition) | |
self.smdl_score_best = 0 | |
loop_times = int((self.k-self.pending_samples)/2) + self.pending_samples | |
for j in tqdm(range(loop_times)): | |
diff = np.setdiff1d(indexes, np.concatenate((Subset, Subset_decrease))) # in indexes but not in Subset | |
sub_candidate_indexes = diff | |
if len(diff) == 1: | |
Subset = np.concatenate((Subset, np.array(diff))) | |
break | |
Subset, Subset_decrease = self.evaluation_maximun_sample(Subset, Subset_decrease, sub_candidate_indexes, partition) | |
sub_images = torch.stack([ | |
self.preproccessing_function( | |
self.org_img | |
), | |
self.preproccessing_function( | |
self.org_img - self.org_img | |
), | |
]) | |
scores = self.proccess_compute_consistency_score(sub_images.to(self.device)) | |
self.saved_json_file["org_score"] = scores[0].cpu().item() | |
self.saved_json_file["baseline_score"] = scores[1].cpu().item() | |
self.saved_json_file["consistency_score"] = self.saved_json_file["consistency_score_increase"] + self.saved_json_file["consistency_score_decrease"][::-1] + [scores[0].cpu().item()] | |
self.saved_json_file["collaboration_score"] = self.saved_json_file["collaboration_score_increase"] + self.saved_json_file["collaboration_score_decrease"][::-1] + [1-scores[1].cpu().item()] | |
Subset = np.concatenate((Subset, Subset_decrease[::-1])) | |
return Subset.astype(int) | |
def __call__(self, image_set, id = None): | |
""" | |
Compute Source Face Submodular Score | |
@image_set: [mask_image 1, ..., mask_image m] (cv2 format) | |
""" | |
# V_partition = self.partition_collection(image_set) # [ [image1, image2, ...], [image1, image2, ...], ... ] | |
self.save_file_init() | |
self.org_img = np.array(image_set).sum(0).astype(np.uint8) | |
source_image = self.preproccessing_function(self.org_img) | |
self.source_feature = self.model(source_image.unsqueeze(0).to(self.device)) | |
if id == None: | |
self.target_label = (self.source_feature @ self.semantic_feature.T).argmax().cpu().item() | |
else: | |
self.target_label = id | |
Subset_merge = np.array(image_set) | |
Submodular_Subset = self.get_merge_set(Subset_merge) # array([17, 42, 49, ...]) | |
submodular_image_set = Subset_merge[Submodular_Subset] # sub_k x (112, 112, 3) | |
submodular_image = submodular_image_set.sum(0).astype(np.uint8) | |
self.saved_json_file["smdl_score_max"] = max(self.saved_json_file["smdl_score"]) | |
self.saved_json_file["smdl_score_max_index"] = self.saved_json_file["smdl_score"].index(self.saved_json_file["smdl_score_max"]) | |
return submodular_image, submodular_image_set, self.saved_json_file |