Spaces:
Sleeping
Sleeping
File size: 11,937 Bytes
4dca37a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import math
import random
import numpy as np
from tqdm import tqdm
import cv2
from PIL import Image
import torch
import torch.nn.functional as F
from .submodular_vit_torch import MultiModalSubModularExplanation
class MultiModalSubModularExplanationEfficientPlus(MultiModalSubModularExplanation):
def __init__(self,
model,
semantic_feature,
preproccessing_function,
k = 40,
lambda1 = 1.0,
lambda2 = 1.0,
lambda3 = 1.0,
lambda4 = 1.0,
device = "cuda",
pending_samples = 8):
super(MultiModalSubModularExplanationEfficientPlus, self).__init__(
k = k,
model = model,
semantic_feature = semantic_feature,
preproccessing_function = preproccessing_function,
lambda1 = lambda1,
lambda2 = lambda2,
lambda3 = lambda3,
lambda4 = lambda4,
device = device)
# Parameters of the submodular
self.pending_samples = pending_samples
def evaluation_maximun_sample(self,
main_set,
decrease_set,
candidate_set,
partition_image_set):
"""
Given a subset, return a best sample index
"""
sub_index_sets = []
for candidate_ in candidate_set:
sub_index_sets.append(
np.concatenate((main_set, np.array([candidate_]))).astype(int))
sub_index_sets_decrease = []
for candidate_ in candidate_set:
sub_index_sets_decrease.append(
np.concatenate((decrease_set, np.array([candidate_]))).astype(int))
# merge images / 组合图像
sub_images = torch.stack([
self.preproccessing_function(
self.merge_image(sub_index_set, partition_image_set)
) for sub_index_set in sub_index_sets])
batch_input_images = sub_images.to(self.device)
with torch.no_grad():
# 2. Effectiveness Score
score_effectiveness = self.proccess_compute_effectiveness_score(sub_index_sets)
score_effectiveness_decrease = self.proccess_compute_effectiveness_score(sub_index_sets_decrease)
# 3. Consistency Score
score_consistency = self.proccess_compute_consistency_score(batch_input_images)
# 1. Confidence Score
score_confidence = self.proccess_compute_confidence_score()
# 4. Collaboration Score
sub_images_reverse = torch.stack([
self.preproccessing_function(
self.org_img - self.merge_image(sub_index_set, partition_image_set)
) for sub_index_set in sub_index_sets])
batch_input_images_reverse = sub_images_reverse.to(self.device)
score_collaboration = 1 - self.proccess_compute_consistency_score(batch_input_images_reverse)
# submodular score
# smdl_score = self.lambda1 * score_confidence + self.lambda2 * score_effectiveness + self.lambda3 * score_consistency + self.lambda4 * score_collaborations
smdl_score = self.lambda1 * score_confidence + self.lambda2 * score_effectiveness + self.lambda3 * score_consistency + self.lambda4 * score_collaboration
arg_max_index = smdl_score.argmax().cpu().item()
# if self.lambda1 != 0:
self.saved_json_file["confidence_score_increase"].append(score_confidence[arg_max_index].cpu().item())
self.saved_json_file["effectiveness_score_increase"].append(score_effectiveness[arg_max_index].cpu().item())
self.saved_json_file["consistency_score_increase"].append(score_consistency[arg_max_index].cpu().item())
self.saved_json_file["collaboration_score_increase"].append(score_collaboration[arg_max_index].cpu().item())
self.saved_json_file["smdl_score"].append(smdl_score[arg_max_index].cpu().item())
if len(candidate_set) > self.pending_samples:
smdl_score_decrease = self.lambda1 * score_confidence + self.lambda2 * score_effectiveness_decrease + self.lambda3 * score_consistency + self.lambda4 * score_collaboration
# Select the sample with the worst score as the negative sample estimate
negtive_sampels_indexes = smdl_score_decrease.topk(self.pending_samples, largest = False).indices.cpu().numpy()
if arg_max_index in negtive_sampels_indexes:
negtive_sampels_indexes = negtive_sampels_indexes.tolist()
negtive_sampels_indexes.remove(arg_max_index)
negtive_sampels_indexes = np.array(negtive_sampels_indexes)
sub_index_negtive_sets = np.array(sub_index_sets_decrease)[negtive_sampels_indexes]
# merge images / 组合图像
sub_images_decrease = torch.stack([
self.preproccessing_function(
self.merge_image(sub_index_set, partition_image_set)
) for sub_index_set in sub_index_negtive_sets])
sub_images_decrease_reverse = torch.stack([
self.preproccessing_function(
self.org_img - self.merge_image(sub_index_set, partition_image_set)
) for sub_index_set in sub_index_negtive_sets])
# 2. Effectiveness Score
score_effectiveness_decrease_ = score_effectiveness_decrease[negtive_sampels_indexes]
# 3. Consistency Score
score_consistency_decrease = self.proccess_compute_consistency_score(sub_images_decrease.to(self.device))
# 1. Confidence Score
score_confidence_decrease = self.proccess_compute_confidence_score()
# 4. Collaboration Score
score_collaboration_decrease = 1 - self.proccess_compute_consistency_score(sub_images_decrease_reverse.to(self.device))
smdl_score_decrease = self.lambda1 * score_confidence_decrease + self.lambda2 * score_effectiveness_decrease_ + self.lambda3 * score_consistency_decrease + self.lambda4 * score_collaboration_decrease
arg_min_index = smdl_score_decrease.argmin().cpu().item()
decrease_set = sub_index_negtive_sets[arg_min_index]
self.saved_json_file["confidence_score_decrease"].append(score_confidence_decrease[arg_min_index].cpu().item())
self.saved_json_file["effectiveness_score_decrease"].append(score_effectiveness_decrease_[arg_min_index].cpu().item())
self.saved_json_file["consistency_score_decrease"].append(1-score_collaboration_decrease[arg_min_index].cpu().item())
self.saved_json_file["collaboration_score_decrease"].append(1-score_consistency_decrease[arg_min_index].cpu().item())
return sub_index_sets[arg_max_index], decrease_set
def save_file_init(self):
self.saved_json_file = {}
self.saved_json_file["sub-k"] = self.k
self.saved_json_file["confidence_score"] = []
self.saved_json_file["effectiveness_score"] = []
self.saved_json_file["consistency_score"] = []
self.saved_json_file["collaboration_score"] = []
self.saved_json_file["confidence_score_increase"] = []
self.saved_json_file["effectiveness_score_increase"] = []
self.saved_json_file["consistency_score_increase"] = []
self.saved_json_file["collaboration_score_increase"] = []
self.saved_json_file["confidence_score_decrease"] = []
self.saved_json_file["effectiveness_score_decrease"] = []
self.saved_json_file["consistency_score_decrease"] = []
self.saved_json_file["collaboration_score_decrease"] = []
self.saved_json_file["smdl_score"] = []
self.saved_json_file["lambda1"] = self.lambda1
self.saved_json_file["lambda2"] = self.lambda2
self.saved_json_file["lambda3"] = self.lambda3
self.saved_json_file["lambda4"] = self.lambda4
def get_merge_set(self, partition):
"""
"""
Subset = np.array([])
Subset_decrease = np.array([])
indexes = np.arange(len(partition))
# First calculate the similarity of each element to facilitate calculation of effectiveness score.
self.calculate_distance_of_each_element(partition)
self.smdl_score_best = 0
loop_times = int((self.k-self.pending_samples)/2) + self.pending_samples
for j in tqdm(range(loop_times)):
diff = np.setdiff1d(indexes, np.concatenate((Subset, Subset_decrease))) # in indexes but not in Subset
sub_candidate_indexes = diff
if len(diff) == 1:
Subset = np.concatenate((Subset, np.array(diff)))
break
Subset, Subset_decrease = self.evaluation_maximun_sample(Subset, Subset_decrease, sub_candidate_indexes, partition)
sub_images = torch.stack([
self.preproccessing_function(
self.org_img
),
self.preproccessing_function(
self.org_img - self.org_img
),
])
scores = self.proccess_compute_consistency_score(sub_images.to(self.device))
self.saved_json_file["org_score"] = scores[0].cpu().item()
self.saved_json_file["baseline_score"] = scores[1].cpu().item()
self.saved_json_file["consistency_score"] = self.saved_json_file["consistency_score_increase"] + self.saved_json_file["consistency_score_decrease"][::-1] + [scores[0].cpu().item()]
self.saved_json_file["collaboration_score"] = self.saved_json_file["collaboration_score_increase"] + self.saved_json_file["collaboration_score_decrease"][::-1] + [1-scores[1].cpu().item()]
Subset = np.concatenate((Subset, Subset_decrease[::-1]))
return Subset.astype(int)
def __call__(self, image_set, id = None):
"""
Compute Source Face Submodular Score
@image_set: [mask_image 1, ..., mask_image m] (cv2 format)
"""
# V_partition = self.partition_collection(image_set) # [ [image1, image2, ...], [image1, image2, ...], ... ]
self.save_file_init()
self.org_img = np.array(image_set).sum(0).astype(np.uint8)
source_image = self.preproccessing_function(self.org_img)
self.source_feature = self.model(source_image.unsqueeze(0).to(self.device))
if id == None:
self.target_label = (self.source_feature @ self.semantic_feature.T).argmax().cpu().item()
else:
self.target_label = id
Subset_merge = np.array(image_set)
Submodular_Subset = self.get_merge_set(Subset_merge) # array([17, 42, 49, ...])
submodular_image_set = Subset_merge[Submodular_Subset] # sub_k x (112, 112, 3)
submodular_image = submodular_image_set.sum(0).astype(np.uint8)
self.saved_json_file["smdl_score_max"] = max(self.saved_json_file["smdl_score"])
self.saved_json_file["smdl_score_max_index"] = self.saved_json_file["smdl_score"].index(self.saved_json_file["smdl_score_max"])
return submodular_image, submodular_image_set, self.saved_json_file |