File size: 11,937 Bytes
4dca37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import math
import random
import numpy as np

from tqdm import tqdm
import cv2
from PIL import Image

import torch
import torch.nn.functional as F

from .submodular_vit_torch import MultiModalSubModularExplanation

class MultiModalSubModularExplanationEfficientPlus(MultiModalSubModularExplanation):
    def __init__(self, 
                 model,
                 semantic_feature,
                 preproccessing_function,
                 k = 40,
                 lambda1 = 1.0,
                 lambda2 = 1.0,
                 lambda3 = 1.0,
                 lambda4 = 1.0,
                 device = "cuda",
                 pending_samples = 8):
        super(MultiModalSubModularExplanationEfficientPlus, self).__init__(
            k = k,
            model = model,
            semantic_feature = semantic_feature,
            preproccessing_function = preproccessing_function,
            
            lambda1 = lambda1,
            lambda2 = lambda2,
            lambda3 = lambda3,
            lambda4 = lambda4,
            
            device = device)
        
        # Parameters of the submodular
        self.pending_samples = pending_samples
    
    def evaluation_maximun_sample(self, 
                                  main_set, 
                                  decrease_set,
                                  candidate_set, 
                                  partition_image_set):
        """
        Given a subset, return a best sample index
        """
        sub_index_sets = []
        for candidate_ in candidate_set:
            sub_index_sets.append(
                np.concatenate((main_set, np.array([candidate_]))).astype(int))
            

        sub_index_sets_decrease = []
        for candidate_ in candidate_set:
            sub_index_sets_decrease.append(
                np.concatenate((decrease_set, np.array([candidate_]))).astype(int))

        # merge images / 组合图像
        sub_images = torch.stack([
            self.preproccessing_function(
                self.merge_image(sub_index_set, partition_image_set)
            ) for sub_index_set in sub_index_sets])
        
        batch_input_images = sub_images.to(self.device)
        
        with torch.no_grad():
            # 2. Effectiveness Score
            score_effectiveness = self.proccess_compute_effectiveness_score(sub_index_sets)
            score_effectiveness_decrease = self.proccess_compute_effectiveness_score(sub_index_sets_decrease)
            
            # 3. Consistency Score
            score_consistency = self.proccess_compute_consistency_score(batch_input_images)
            
            # 1. Confidence Score
            score_confidence = self.proccess_compute_confidence_score()
            
            # 4. Collaboration Score
            sub_images_reverse = torch.stack([
                self.preproccessing_function(
                    self.org_img - self.merge_image(sub_index_set, partition_image_set)
                ) for sub_index_set in sub_index_sets])
        
            batch_input_images_reverse = sub_images_reverse.to(self.device)
            
            score_collaboration = 1 - self.proccess_compute_consistency_score(batch_input_images_reverse)
            
            # submodular score
            # smdl_score = self.lambda1 * score_confidence + self.lambda2 * score_effectiveness +  self.lambda3 * score_consistency + self.lambda4 * score_collaborations
            smdl_score = self.lambda1 * score_confidence + self.lambda2 * score_effectiveness + self.lambda3 * score_consistency + self.lambda4 * score_collaboration
            arg_max_index = smdl_score.argmax().cpu().item()
            
            # if self.lambda1 != 0:
            self.saved_json_file["confidence_score_increase"].append(score_confidence[arg_max_index].cpu().item())
            self.saved_json_file["effectiveness_score_increase"].append(score_effectiveness[arg_max_index].cpu().item())
            self.saved_json_file["consistency_score_increase"].append(score_consistency[arg_max_index].cpu().item())
            self.saved_json_file["collaboration_score_increase"].append(score_collaboration[arg_max_index].cpu().item())
            self.saved_json_file["smdl_score"].append(smdl_score[arg_max_index].cpu().item())

            if len(candidate_set) > self.pending_samples:
                smdl_score_decrease = self.lambda1 * score_confidence + self.lambda2 * score_effectiveness_decrease + self.lambda3 * score_consistency + self.lambda4 * score_collaboration
                
                # Select the sample with the worst score as the negative sample estimate
                negtive_sampels_indexes = smdl_score_decrease.topk(self.pending_samples, largest = False).indices.cpu().numpy()
                
                if arg_max_index in negtive_sampels_indexes:
                    negtive_sampels_indexes = negtive_sampels_indexes.tolist()
                    negtive_sampels_indexes.remove(arg_max_index)
                    negtive_sampels_indexes = np.array(negtive_sampels_indexes)
                
                sub_index_negtive_sets = np.array(sub_index_sets_decrease)[negtive_sampels_indexes]
                
                # merge images / 组合图像
                sub_images_decrease = torch.stack([
                    self.preproccessing_function(
                        self.merge_image(sub_index_set, partition_image_set)
                    ) for sub_index_set in sub_index_negtive_sets])
                
                sub_images_decrease_reverse = torch.stack([
                    self.preproccessing_function(
                        self.org_img - self.merge_image(sub_index_set, partition_image_set)
                    ) for sub_index_set in sub_index_negtive_sets])
                
                # 2. Effectiveness Score
                score_effectiveness_decrease_ = score_effectiveness_decrease[negtive_sampels_indexes]
                
                # 3. Consistency Score
                score_consistency_decrease = self.proccess_compute_consistency_score(sub_images_decrease.to(self.device))
                
                # 1. Confidence Score
                score_confidence_decrease = self.proccess_compute_confidence_score()
                
                # 4. Collaboration Score
                score_collaboration_decrease = 1 - self.proccess_compute_consistency_score(sub_images_decrease_reverse.to(self.device))
                
                smdl_score_decrease = self.lambda1 * score_confidence_decrease + self.lambda2 * score_effectiveness_decrease_ + self.lambda3 * score_consistency_decrease + self.lambda4 * score_collaboration_decrease
                arg_min_index = smdl_score_decrease.argmin().cpu().item()
                
                decrease_set = sub_index_negtive_sets[arg_min_index]

                self.saved_json_file["confidence_score_decrease"].append(score_confidence_decrease[arg_min_index].cpu().item())
                self.saved_json_file["effectiveness_score_decrease"].append(score_effectiveness_decrease_[arg_min_index].cpu().item())
                self.saved_json_file["consistency_score_decrease"].append(1-score_collaboration_decrease[arg_min_index].cpu().item())
                self.saved_json_file["collaboration_score_decrease"].append(1-score_consistency_decrease[arg_min_index].cpu().item())

            return sub_index_sets[arg_max_index], decrease_set
    
    def save_file_init(self):
        self.saved_json_file = {}
        self.saved_json_file["sub-k"] = self.k
        
        self.saved_json_file["confidence_score"] = []
        self.saved_json_file["effectiveness_score"] = []
        self.saved_json_file["consistency_score"] = []
        self.saved_json_file["collaboration_score"] = []
        
        self.saved_json_file["confidence_score_increase"] = []
        self.saved_json_file["effectiveness_score_increase"] = []
        self.saved_json_file["consistency_score_increase"] = []
        self.saved_json_file["collaboration_score_increase"] = []
        
        self.saved_json_file["confidence_score_decrease"] = []
        self.saved_json_file["effectiveness_score_decrease"] = []
        self.saved_json_file["consistency_score_decrease"] = []
        self.saved_json_file["collaboration_score_decrease"] = []
        
        self.saved_json_file["smdl_score"] = []
        self.saved_json_file["lambda1"] = self.lambda1
        self.saved_json_file["lambda2"] = self.lambda2
        self.saved_json_file["lambda3"] = self.lambda3
        self.saved_json_file["lambda4"] = self.lambda4
        
    def get_merge_set(self, partition):
        """
        """
        Subset = np.array([])
        Subset_decrease = np.array([])
        
        indexes = np.arange(len(partition))
        
        # First calculate the similarity of each element to facilitate calculation of effectiveness score.
        self.calculate_distance_of_each_element(partition)
        
        self.smdl_score_best = 0
        
        loop_times = int((self.k-self.pending_samples)/2) + self.pending_samples
        for j in tqdm(range(loop_times)):
            diff = np.setdiff1d(indexes, np.concatenate((Subset, Subset_decrease)))  # in indexes but not in Subset
            
            sub_candidate_indexes = diff
            if len(diff) == 1:
                Subset = np.concatenate((Subset, np.array(diff)))
                break
            
            Subset, Subset_decrease = self.evaluation_maximun_sample(Subset, Subset_decrease, sub_candidate_indexes, partition)
        
        sub_images = torch.stack([
            self.preproccessing_function(
                self.org_img
            ),
            self.preproccessing_function(
                self.org_img - self.org_img
            ),
        ])
        scores = self.proccess_compute_consistency_score(sub_images.to(self.device))
        
        self.saved_json_file["org_score"] = scores[0].cpu().item()
        self.saved_json_file["baseline_score"] = scores[1].cpu().item()
        
        self.saved_json_file["consistency_score"] = self.saved_json_file["consistency_score_increase"] + self.saved_json_file["consistency_score_decrease"][::-1] + [scores[0].cpu().item()]
        self.saved_json_file["collaboration_score"] = self.saved_json_file["collaboration_score_increase"] + self.saved_json_file["collaboration_score_decrease"][::-1] + [1-scores[1].cpu().item()]
        
        Subset = np.concatenate((Subset, Subset_decrease[::-1]))
        
        return Subset.astype(int)
    
    def __call__(self, image_set, id = None):
        """
        Compute Source Face Submodular Score
            @image_set: [mask_image 1, ..., mask_image m] (cv2 format)
        """
        # V_partition = self.partition_collection(image_set)  # [ [image1, image2, ...], [image1, image2, ...], ...  ]
    
        self.save_file_init()
        
        self.org_img = np.array(image_set).sum(0).astype(np.uint8)      
        source_image = self.preproccessing_function(self.org_img)

        self.source_feature = self.model(source_image.unsqueeze(0).to(self.device))
        if id == None:
            self.target_label = (self.source_feature @ self.semantic_feature.T).argmax().cpu().item()
        else:
            self.target_label = id
        
        Subset_merge = np.array(image_set)
        Submodular_Subset = self.get_merge_set(Subset_merge)  # array([17, 42, 49, ...])
            
        submodular_image_set = Subset_merge[Submodular_Subset]  # sub_k x (112, 112, 3)
        
        
        submodular_image = submodular_image_set.sum(0).astype(np.uint8)
        self.saved_json_file["smdl_score_max"] = max(self.saved_json_file["smdl_score"])
        self.saved_json_file["smdl_score_max_index"] = self.saved_json_file["smdl_score"].index(self.saved_json_file["smdl_score_max"])

        return submodular_image, submodular_image_set, self.saved_json_file