Spaces:
Sleeping
Sleeping
File size: 18,279 Bytes
4dca37a 00d944c 4dca37a 00d944c 4dca37a 00d944c 8c0a35a 4dca37a 00d944c 4dca37a 00d944c 4dca37a 00d944c 4dca37a f53377b 4dca37a 64a13b7 4dca37a 64a13b7 4dca37a 55c3fad 4dca37a 8c0a35a 4dca37a f53377b 4dca37a f53377b 4dca37a 64a13b7 4dca37a f53377b 64a13b7 f53377b 4dca37a 64a13b7 4dca37a 64a13b7 4dca37a f53377b 4dca37a f53377b 4dca37a 64a13b7 4dca37a f53377b 8c0a35a 9e49331 4dca37a f53377b 4dca37a 64a13b7 4dca37a f53377b 4dca37a f53377b 4dca37a f53377b 4dca37a f53377b 4dca37a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import cv2
import matplotlib
import clip
from utils import *
matplotlib.get_cachedir()
plt.rc('font', family="Times New Roman")
from sklearn import metrics
import torch
from torchvision import transforms
from tqdm import tqdm
from models.submodular_vit_efficient_plus import MultiModalSubModularExplanationEfficientPlus
data_transform = transforms.Compose(
[
transforms.Resize(
(224,224), interpolation=transforms.InterpolationMode.BICUBIC
),
# transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711),
),
]
)
class CLIPModel_Super(torch.nn.Module):
def __init__(self,
type="ViT-L/14",
download_root=None,
device = "cuda"):
super().__init__()
self.device = device
self.model, _ = clip.load(type, device=self.device, download_root=download_root)
self.model = self.model.type(torch.float32)
def forward(self, vision_inputs):
"""
Input:
vision_inputs: torch.size([B,C,W,H])
Output:
embeddings: a d-dimensional vector torch.size([B,d])
"""
vision_inputs = vision_inputs.type(torch.float32)
with torch.no_grad():
image_features = self.model.encode_image(vision_inputs)
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features
def transform_vision_data(image):
"""
Input:
image: An image read by opencv [w,h,c]
Output:
image: After preproccessing, is a tensor [c,w,h]
"""
image = Image.fromarray(image)
image = data_transform(image)
return image
def zeroshot_classifier(model, classnames, templates, device):
with torch.no_grad():
zeroshot_weights = []
for classname in tqdm(classnames):
texts = [template.format(classname) for template in templates] #format with class
texts = clip.tokenize(texts).to(device) #tokenize
with torch.no_grad():
class_embeddings = model.model.encode_text(texts)
class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
class_embedding = class_embeddings.mean(dim=0)
class_embedding /= class_embedding.norm()
zeroshot_weights.append(class_embedding)
zeroshot_weights = torch.stack(zeroshot_weights).cuda()
return zeroshot_weights*100
device = "cuda" if torch.cuda.is_available() else "cpu"
# device = "cpu"
# Instantiate model
vis_model = CLIPModel_Super("ViT-B/16", device=device, download_root="./ckpt")
vis_model.eval()
vis_model.to(device)
print("load clip model")
semantic_path = "./clip_vitb_imagenet_zeroweights.pt"
if os.path.exists(semantic_path):
semantic_feature = torch.load(semantic_path, map_location="cpu")
semantic_feature = semantic_feature.to(device)
semantic_feature = semantic_feature.type(torch.float32)
else:
semantic_feature = zeroshot_classifier(vis_model, imagenet_classes, imagenet_templates, device)
torch.save(semantic_feature, semantic_path)
explainer = MultiModalSubModularExplanationEfficientPlus(
vis_model, semantic_feature, transform_vision_data, device=device,
lambda1=0.01,
lambda2=0.05,
lambda3=20.,
lambda4=5.)
explainer.org_semantic_feature = semantic_feature
def add_value_decrease(smdl_mask, json_file):
single_mask = np.zeros_like(smdl_mask[0].mean(-1))
value_list_1 = np.array(json_file["consistency_score"]) + np.array(json_file["collaboration_score"])
value_list_2 = np.array([json_file["baseline_score"]] + json_file["consistency_score"][:-1]) + np.array([1 - json_file["org_score"]] + json_file["collaboration_score"][:-1])
value_list = value_list_1 - value_list_2
values = []
value = 0
for smdl_single_mask, smdl_value in zip(smdl_mask, value_list):
value = value - abs(smdl_value)
single_mask[smdl_single_mask.sum(-1)>0] = value
values.append(value)
attribution_map = single_mask - single_mask.min()
attribution_map /= attribution_map.max()
return attribution_map, np.array(values)
def visualization(image, submodular_image_set, saved_json_file, index=None, compute_params=True):
attribution_map, value_list = add_value_decrease(submodular_image_set, saved_json_file)
vis_image, heatmap = gen_cam(image, norm_image(attribution_map))
insertion_ours_images = []
# deletion_ours_images = []
insertion_image = submodular_image_set[0] - submodular_image_set[0]
insertion_ours_images.append(insertion_image)
# deletion_ours_images.append(image - insertion_image)
for smdl_sub_mask in submodular_image_set[:]:
insertion_image = insertion_image.copy() + smdl_sub_mask
insertion_ours_images.append(insertion_image)
# deletion_ours_images.append(image - insertion_image)
insertion_ours_images_input_results = np.array([1-saved_json_file["collaboration_score"][-1]] + saved_json_file["consistency_score"])
if index == None:
ours_best_index = np.argmax(insertion_ours_images_input_results)
else:
ours_best_index = index
x = [(insertion_ours_image.sum(-1)!=0).sum() / (image.shape[0] * image.shape[1]) for insertion_ours_image in insertion_ours_images]
i = len(x)
fig, [ax1, ax2, ax3] = plt.subplots(1,3, gridspec_kw = {'width_ratios':[1, 1, 1.5]}, figsize=(30,8))
ax1.spines["left"].set_visible(False)
ax1.spines["right"].set_visible(False)
ax1.spines["top"].set_visible(False)
ax1.spines["bottom"].set_visible(False)
ax1.xaxis.set_visible(False)
ax1.yaxis.set_visible(False)
ax1.set_title('Attribution Map', fontsize=54)
ax1.set_facecolor('white')
ax1.imshow(vis_image[...,::-1].astype(np.uint8))
ax2.spines["left"].set_visible(False)
ax2.spines["right"].set_visible(False)
ax2.spines["top"].set_visible(False)
ax2.spines["bottom"].set_visible(False)
ax2.xaxis.set_visible(True)
ax2.yaxis.set_visible(False)
ax2.set_title('Searched Region', fontsize=54)
ax2.set_facecolor('white')
ax2.set_xlabel("Confidence {:.4f}".format(insertion_ours_images_input_results[ours_best_index]), fontsize=44)
ax2.tick_params(axis='x', which='both', bottom=False, top=False, labelbottom=False)
ax3.set_xlim((0, 1))
ax3.set_ylim((0, 1))
ax3.set_ylabel('Recognition Score', fontsize=44)
ax3.set_xlabel('Percentage of image revealed', fontsize=44)
ax3.tick_params(axis='both', which='major', labelsize=36)
x_ = x[:i]
ours_y = insertion_ours_images_input_results[:i]
ax3.plot(x_, ours_y, color='dodgerblue', linewidth=3.5) # draw curve
ax3.set_facecolor('white')
ax3.spines['bottom'].set_color('black')
ax3.spines['bottom'].set_linewidth(2.0)
ax3.spines['top'].set_color('none')
ax3.spines['left'].set_color('black')
ax3.spines['left'].set_linewidth(2.0)
ax3.spines['right'].set_color('none')
# plt.legend(["Ours"], fontsize=40, loc="upper left")
ax3.scatter(x_[-1], ours_y[-1], color='dodgerblue', s=54) # Plot latest point
# 在曲线下方填充淡蓝色
ax3.fill_between(x_, ours_y, color='dodgerblue', alpha=0.1)
kernel = np.ones((3, 3), dtype=np.uint8)
# ax3.plot([x_[ours_best_index], x_[ours_best_index]], [0, 1], color='red', linewidth=3.5) # 绘制红色曲线
ax3.axvline(x=x_[int(ours_best_index)], color='red', linewidth=3.5) # 绘制红色垂直线
# Ours
mask = (image - insertion_ours_images[int(ours_best_index)]).mean(-1)
mask[mask>0] = 1
if int(ours_best_index) != 0:
dilate = cv2.dilate(mask, kernel, 3)
# erosion = cv2.erode(dilate, kernel, iterations=3)
# dilate = cv2.dilate(erosion, kernel, 2)
edge = dilate - mask
# erosion = cv2.erode(dilate, kernel, iterations=1)
image_debug = image.copy()
image_debug[mask>0] = image_debug[mask>0] * 0.5
if int(ours_best_index) != 0:
image_debug[edge>0] = np.array([255,0,0])
ax2.imshow(image_debug)
if compute_params:
auc = metrics.auc(x, insertion_ours_images_input_results)
ax3.set_title('Insertion Curve', fontsize=54)
fig.tight_layout()
fig.canvas.draw()
img_curve = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
img_curve = img_curve.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close(fig) # 关闭图形以释放资源
if compute_params:
return img_curve, insertion_ours_images_input_results.max(), auc, ours_best_index
else:
return img_curve
def gen_cam(image, mask):
"""
Generate heatmap
:param image: [H,W,C]
:param mask: [H,W],range 0-1
:return: tuple(cam,heatmap)
"""
# Read image
# image = cv2.resize(cv2.imread(image_path), (224,224))
# mask->heatmap
heatmap = cv2.applyColorMap(np.uint8(mask), cv2.COLORMAP_COOL)
heatmap = np.float32(heatmap)
# merge heatmap to original image
cam = 0.5*heatmap + 0.5*np.float32(image)
return cam, (heatmap).astype(np.uint8)
def norm_image(image):
"""
Normalization image
:param image: [H,W,C]
:return:
"""
image = image.copy()
image -= np.max(np.min(image), 0)
image /= np.max(image)
image *= 255.
return np.uint8(image)
def read_image(file_path):
image = Image.open(file_path)
image = image.convert("RGB")
image = image.resize((512,512))
return np.array(image)
# 使用同一个示例图像 "shark.png"
default_images = {
# "Default Image": read_image("images/shark.png"),
"Example: tiger shark": read_image("images/shark.png"),
"Example: quail": read_image("images/bird.png"), # 所有选项都使用相同的图片
"Example: tabby cat or lion": read_image("images/cat_lion.jpeg"),
"Example: rabbit or duck": read_image("images/rabbit-duck.jpg"),
}
def interpret_image(uploaded_image, slider, text_input):
# 使用上传的图像(如果有),否则使用生成的图像
if uploaded_image is not None:
image = np.array(uploaded_image)
else:
return None, 0, 0
image = cv2.resize(image, (224, 224))
element_sets_V = SubRegionDivision(image, mode="slico", region_size=40)
explainer.k = len(element_sets_V)
global submodular_image_set
global saved_json_file
image_input = explainer.preproccessing_function(image).unsqueeze(0)
predicted_class = (explainer.model(image_input.to(explainer.device)) @ explainer.semantic_feature.T).argmax().cpu().item()
# input
if text_input == "":
target_id = predicted_class
else:
if text_input in imagenet_classes:
target_id = imagenet_classes.index(text_input)
else:
target_id = -1
texts = [text_input]
texts = clip.tokenize(texts).to(device) #tokenize
with torch.no_grad():
class_embeddings = vis_model.model.encode_text(texts)
class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
class_embeddings = class_embeddings.to(device) * 100
explainer.semantic_feature = torch.cat((explainer.org_semantic_feature, class_embeddings), dim=0)
# global im
submodular_image, submodular_image_set, saved_json_file = explainer(element_sets_V, id=target_id)
# attribution_map, value_list = add_value_decrease(submodular_image_set, saved_json_file)
# im, heatmap = gen_cam(image, norm_image(attribution_map))
image_curve, highest_confidence, insertion_auc_score, ours_best_index = visualization(image, submodular_image_set, saved_json_file, index=None)
if target_id == -1:
text_output_class = "This method explains that CLIP is interested in describing \"{}\".".format(text_input)
else:
text_output_class = "The method explains why the CLIP (ViT-B/16) model identifies an image as {}.".format(imagenet_classes[explainer.target_label])
text_output_predict = "The image is predicted as {}".format(imagenet_classes[predicted_class])
explainer.semantic_feature = explainer.org_semantic_feature
return image_curve, highest_confidence, insertion_auc_score, text_output_class, text_output_predict, None
def predict_image(uploaded_image):
# 使用上传的图像(如果有),否则使用生成的图像
if uploaded_image is not None:
image = np.array(uploaded_image)
else:
return None, 0, 0
image = cv2.resize(image, (224, 224))
image_input = explainer.preproccessing_function(image).unsqueeze(0)
predicted_class = (explainer.model(image_input.to(explainer.device)) @ explainer.semantic_feature.T).argmax().cpu().item()
text_output_predict = "The image is predicted as {}".format(imagenet_classes[predicted_class])
return text_output_predict
def visualization_slider(uploaded_image, slider):
# 使用上传的图像(如果有),否则使用生成的图像
if uploaded_image is not None:
image = np.array(uploaded_image)
else:
return None, 0, 0
image = cv2.resize(image, (224, 224))
image_curve = visualization(image, submodular_image_set, saved_json_file, index=slider, compute_params=False)
return image_curve
def update_image(thumbnail_name):
# 返回对应缩略图的图像数据
return default_images[thumbnail_name]
# 创建 Gradio 界面
with gr.Blocks() as demo:
gr.Markdown("# Semantic Region Attribution and Mistake Discovery via Submodular Subset Selection") # 使用Markdown添加标题
gr.Markdown("Since huggingface only has ordinary CPUs available, our sub-region division is relatively coarse-grained, which may affect the attribution performance. The inference time is about 5 minutes (GPU is about 4s). If you are interested, you can try our source code. We have written many scripts to facilitate visualization.")
with gr.Row():
with gr.Column():
# 第一排:上传图像输入框和一个缩略图
with gr.Row():
# 上传图像输入框
image_input = gr.Image(label="Upload Image", type="numpy")
# 第一个缩略图和按钮
with gr.Column():
# gr.Image(value=default_images["Default Image"], type="numpy")
# button_default = gr.Button(value="Default Image")
# button_default.click(
# fn=lambda k="Default Image": update_image(k),
# inputs=[],
# outputs=image_input
# )
gr.Textbox("Thank you for using our interpretable attribution method, which originates from the ICLR 2024 Oral paper titled \"Less is More: Fewer Interpretable Regions via Submodular Subset Selection.\" We have now implemented this method on the multimodal ViT model and achieved promising results in explaining model predictions. A key feature of our approach is its ability to clarify the reasons behind the model's prediction errors. We invite you to try out this demo and explore its capabilities. The source code is available at https://github.com/RuoyuChen10/SMDL-Attribution.\nYou can upload an image yourself or select one from the following, then click the button Interpreting Model to get the result. The demo currently does not support selecting categories or descriptions by yourself. If you are interested, you can try it from the source code.", label="Instructions for use", interactive=False)
# 文本输入框和滑块
text_input = gr.Textbox(label="Text Input", placeholder="You can choose what you want to explain. You can enter a word (e.g., 'Rabbit') or a description (e.g., 'A photo of a rabbit'). If the input is empty, the model will explain the predicted category.")
# 第二排:两个缩略图
with gr.Row():
for key in default_images.keys():
with gr.Column():
gr.Image(value=default_images[key], type="numpy")
button = gr.Button(value=key)
button.click(
fn=lambda k=key: update_image(k),
inputs=[],
outputs=image_input
)
with gr.Column():
# 输出图像和控件
image_output = gr.Image(label="Output Image")
slider = gr.Slider(minimum=0, maximum=34, step=1, label="Number of Sub-regions")
text_output_predict = gr.Textbox(label="Predicted Category")
text_output_class = gr.Textbox(label="Explaining Category")
with gr.Row():
# 最高置信度和插入 AUC Score 并排显示
text_output_confidence = gr.Textbox(label="Highest Confidence")
text_output_auc = gr.Textbox(label="Insertion AUC Score")
with gr.Row():
predict_button = gr.Button("Model Inference")
interpret_button = gr.Button("Interpreting Model")
# 定义解释模型按钮点击事件
interpret_button.click(
fn=interpret_image,
inputs=[image_input, slider, text_input],
outputs=[image_output, text_output_confidence, text_output_auc, text_output_class, text_output_predict, text_input]
)
predict_button.click(
fn=predict_image,
inputs=[image_input],
outputs=[text_output_predict]
)
# 实时更新的滑块
slider.change(
fn=visualization_slider,
inputs=[image_input, slider],
outputs=[image_output]
)
# 启动 Gradio 应用
demo.launch()
|