Spaces:
Sleeping
Sleeping
reduce time
Browse files
app.py
CHANGED
@@ -89,8 +89,8 @@ def zeroshot_classifier(model, classnames, templates, device):
|
|
89 |
zeroshot_weights = torch.stack(zeroshot_weights).cuda()
|
90 |
return zeroshot_weights*100
|
91 |
|
92 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
93 |
-
|
94 |
# Instantiate model
|
95 |
vis_model = CLIPModel_Super("ViT-B/16", device=device, download_root="./ckpt")
|
96 |
vis_model.eval()
|
@@ -135,7 +135,10 @@ def add_value_decrease(smdl_mask, json_file):
|
|
135 |
|
136 |
return attribution_map, np.array(values)
|
137 |
|
138 |
-
def visualization(image, submodular_image_set, saved_json_file,
|
|
|
|
|
|
|
139 |
|
140 |
insertion_ours_images = []
|
141 |
# deletion_ours_images = []
|
@@ -166,7 +169,7 @@ def visualization(image, submodular_image_set, saved_json_file, vis_image, index
|
|
166 |
ax1.yaxis.set_visible(False)
|
167 |
ax1.set_title('Attribution Map', fontsize=54)
|
168 |
ax1.set_facecolor('white')
|
169 |
-
ax1.imshow(vis_image.astype(np.uint8))
|
170 |
|
171 |
ax2.spines["left"].set_visible(False)
|
172 |
ax2.spines["right"].set_visible(False)
|
@@ -289,19 +292,20 @@ def interpret_image(uploaded_image, slider, text_input):
|
|
289 |
return None, 0, 0
|
290 |
|
291 |
image = cv2.resize(image, (224, 224))
|
292 |
-
element_sets_V = SubRegionDivision(image, mode="slico", region_size=
|
293 |
|
294 |
explainer.k = len(element_sets_V)
|
|
|
295 |
|
296 |
global submodular_image_set
|
297 |
global saved_json_file
|
298 |
-
global im
|
299 |
submodular_image, submodular_image_set, saved_json_file = explainer(element_sets_V, id=None)
|
300 |
|
301 |
-
attribution_map, value_list = add_value_decrease(submodular_image_set, saved_json_file)
|
302 |
-
im, heatmap = gen_cam(image, norm_image(attribution_map))
|
303 |
|
304 |
-
image_curve, highest_confidence, insertion_auc_score, ours_best_index = visualization(image, submodular_image_set, saved_json_file,
|
305 |
|
306 |
text_output_class = "The method explains why the CLIP (ViT-B/16) model identifies an image as {}.".format(imagenet_classes[explainer.target_label])
|
307 |
|
@@ -316,7 +320,7 @@ def visualization_slider(uploaded_image, slider):
|
|
316 |
|
317 |
image = cv2.resize(image, (224, 224))
|
318 |
|
319 |
-
image_curve = visualization(image, submodular_image_set, saved_json_file,
|
320 |
|
321 |
return image_curve
|
322 |
|
@@ -326,6 +330,7 @@ def update_image(thumbnail_name):
|
|
326 |
|
327 |
# 创建 Gradio 界面
|
328 |
with gr.Blocks() as demo:
|
|
|
329 |
with gr.Row():
|
330 |
with gr.Column():
|
331 |
# 第一排:上传图像输入框和一个缩略图
|
@@ -364,7 +369,7 @@ with gr.Blocks() as demo:
|
|
364 |
# 输出图像和控件
|
365 |
image_output = gr.Image(label="Output Image")
|
366 |
|
367 |
-
slider = gr.Slider(minimum=0, maximum=
|
368 |
|
369 |
text_output_class = gr.Textbox(label="Explaining Category")
|
370 |
with gr.Row():
|
|
|
89 |
zeroshot_weights = torch.stack(zeroshot_weights).cuda()
|
90 |
return zeroshot_weights*100
|
91 |
|
92 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
93 |
+
device = "cpu"
|
94 |
# Instantiate model
|
95 |
vis_model = CLIPModel_Super("ViT-B/16", device=device, download_root="./ckpt")
|
96 |
vis_model.eval()
|
|
|
135 |
|
136 |
return attribution_map, np.array(values)
|
137 |
|
138 |
+
def visualization(image, submodular_image_set, saved_json_file, index=None, compute_params=True):
|
139 |
+
|
140 |
+
attribution_map, value_list = add_value_decrease(submodular_image_set, saved_json_file)
|
141 |
+
vis_image, heatmap = gen_cam(image, norm_image(attribution_map))
|
142 |
|
143 |
insertion_ours_images = []
|
144 |
# deletion_ours_images = []
|
|
|
169 |
ax1.yaxis.set_visible(False)
|
170 |
ax1.set_title('Attribution Map', fontsize=54)
|
171 |
ax1.set_facecolor('white')
|
172 |
+
ax1.imshow(vis_image[...,::-1].astype(np.uint8))
|
173 |
|
174 |
ax2.spines["left"].set_visible(False)
|
175 |
ax2.spines["right"].set_visible(False)
|
|
|
292 |
return None, 0, 0
|
293 |
|
294 |
image = cv2.resize(image, (224, 224))
|
295 |
+
element_sets_V = SubRegionDivision(image, mode="slico", region_size=40)
|
296 |
|
297 |
explainer.k = len(element_sets_V)
|
298 |
+
print(len(element_sets_V))
|
299 |
|
300 |
global submodular_image_set
|
301 |
global saved_json_file
|
302 |
+
# global im
|
303 |
submodular_image, submodular_image_set, saved_json_file = explainer(element_sets_V, id=None)
|
304 |
|
305 |
+
# attribution_map, value_list = add_value_decrease(submodular_image_set, saved_json_file)
|
306 |
+
# im, heatmap = gen_cam(image, norm_image(attribution_map))
|
307 |
|
308 |
+
image_curve, highest_confidence, insertion_auc_score, ours_best_index = visualization(image, submodular_image_set, saved_json_file, index=None)
|
309 |
|
310 |
text_output_class = "The method explains why the CLIP (ViT-B/16) model identifies an image as {}.".format(imagenet_classes[explainer.target_label])
|
311 |
|
|
|
320 |
|
321 |
image = cv2.resize(image, (224, 224))
|
322 |
|
323 |
+
image_curve = visualization(image, submodular_image_set, saved_json_file, index=slider, compute_params=False)
|
324 |
|
325 |
return image_curve
|
326 |
|
|
|
330 |
|
331 |
# 创建 Gradio 界面
|
332 |
with gr.Blocks() as demo:
|
333 |
+
gr.Markdown("# Semantic Region Attribution via Submodular Subset Selection") # 使用Markdown添加标题
|
334 |
with gr.Row():
|
335 |
with gr.Column():
|
336 |
# 第一排:上传图像输入框和一个缩略图
|
|
|
369 |
# 输出图像和控件
|
370 |
image_output = gr.Image(label="Output Image")
|
371 |
|
372 |
+
slider = gr.Slider(minimum=0, maximum=34, step=1, label="Number of Sub-regions")
|
373 |
|
374 |
text_output_class = gr.Textbox(label="Explaining Category")
|
375 |
with gr.Row():
|