File size: 16,027 Bytes
56fd21a 1fc15a8 2aa225e 1fc15a8 a38fa3f 1fc15a8 56fd21a 2aa225e 0e8391a 56fd21a 0e8391a 1fc15a8 56fd21a d957ab0 0e8391a 56fd21a a38fa3f 2aa225e a38fa3f 0e8391a e50357d 0e8391a 56fd21a 0e8391a 56fd21a 0e8391a 56fd21a d957ab0 56fd21a 0e8391a 56fd21a 0e8391a 56fd21a 2cacc96 56fd21a d957ab0 56fd21a 2cacc96 d957ab0 56fd21a 2cacc96 56fd21a 2cacc96 0e8391a 56fd21a 2aa225e 1fc15a8 2aa225e 1fc15a8 2aa225e 1fc15a8 2aa225e 1fc15a8 2aa225e 1fc15a8 2aa225e 1fc15a8 2aa225e 1fc15a8 2aa225e 56fd21a a38fa3f 56fd21a a38fa3f 2aa225e 1fc15a8 a38fa3f 2aa225e 0fbb073 0e8391a 2aa225e a38fa3f 1fc15a8 3cf2176 a38fa3f 1fc15a8 2aa225e 0e8391a 2aa225e 0e8391a a38fa3f 0e8391a a38fa3f 0e8391a 2aa225e a38fa3f 3cf2176 a38fa3f 0e8391a a38fa3f 2aa225e a38fa3f 0e8391a a38fa3f 56fd21a a38fa3f 1fc15a8 0e8391a 56fd21a 0e8391a 2aa225e 56fd21a 2aa225e f631be3 a38fa3f 2aa225e f631be3 2aa225e a38fa3f 0e8391a 2aa225e 0e8391a 2aa225e 0e8391a 56fd21a 0e8391a 07dd6be 0e8391a 2aa225e 0e8391a 2aa225e 0e8391a 07dd6be 2aa225e a38fa3f 2aa225e a38fa3f 2aa225e a38fa3f 0e8391a a38fa3f 0e8391a a38fa3f 0e8391a a38fa3f 56fd21a 0e8391a 2cacc96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import os
import sys
import json
import traceback
import warnings
import asyncio
import aiohttp
from datetime import datetime
from typing import Optional, List, Dict
import logging
# Настройка логгера
logger = logging.getLogger(__name__)
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
from bs4 import BeautifulSoup
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException, BackgroundTasks
from pydantic import BaseModel
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.tracers import ConsoleCallbackHandler
from langchain_core.callbacks import CallbackManager
from langchain_core.documents import Document
# Ignore SSL warnings
warnings.filterwarnings('ignore')
# Initialize environment variables
load_dotenv()
# Проверяем наличие и права доступа к директориям кэша
cache_dir = "/app/.cache"
if not os.path.exists(cache_dir):
os.makedirs(cache_dir, exist_ok=True)
os.chmod(cache_dir, 0o777)
hf_cache_dir = os.path.join(cache_dir, "huggingface")
if not os.path.exists(hf_cache_dir):
os.makedirs(hf_cache_dir, exist_ok=True)
os.chmod(hf_cache_dir, 0o777)
logger.info(f"Cache directories initialized: {cache_dir}, {hf_cache_dir}")
# Initialize FastAPI app
app = FastAPI(title="Status Law Assistant API")
# Конфигурация базы знаний
KB_CONFIG_PATH = "vector_store/kb_config.json"
CACHE_DIR = "cache"
os.makedirs(CACHE_DIR, exist_ok=True)
def get_kb_config():
if os.path.exists(KB_CONFIG_PATH):
with open(KB_CONFIG_PATH, 'r') as f:
return json.load(f)
return {
"version": 1,
"processed_urls": [],
"last_update": None
}
def save_kb_config(config):
os.makedirs(os.path.dirname(KB_CONFIG_PATH), exist_ok=True)
with open(KB_CONFIG_PATH, 'w') as f:
json.dump(config, f)
# Models for request/response
class ChatRequest(BaseModel):
message: str
class ChatResponse(BaseModel):
response: str
context: Optional[str] = None
# Global variables
VECTOR_STORE_PATH = "vector_store"
URLS = [
"https://status.law",
"https://status.law/about",
"https://status.law/careers",
"https://status.law/tariffs-for-services-of-protection-against-extradition",
"https://status.law/challenging-sanctions",
"https://status.law/law-firm-contact-legal-protection",
"https://status.law/cross-border-banking-legal-issues",
"https://status.law/extradition-defense",
"https://status.law/international-prosecution-protection",
"https://status.law/interpol-red-notice-removal",
"https://status.law/practice-areas",
"https://status.law/reputation-protection",
"https://status.law/faq"
]
# Enhanced logging
class CustomCallbackHandler(ConsoleCallbackHandler):
def on_chain_end(self, run):
log_entry = {
"timestamp": datetime.now().isoformat(),
"run_id": str(run.id),
"inputs": run.inputs,
"outputs": run.outputs,
"execution_time": run.end_time - run.start_time if run.end_time else None,
"metadata": run.metadata
}
os.makedirs("chat_history", exist_ok=True)
with open("chat_history/detailed_logs.json", "a", encoding="utf-8") as f:
json.dump(log_entry, f, ensure_ascii=False)
f.write("\n")
# В начале файла добавим константу с именем модели
EMBEDDING_MODEL = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
def init_models():
try:
callback_handler = CustomCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = ChatGroq(
model_name="llama-3.3-70b-versatile",
temperature=0.6,
api_key=os.getenv("GROQ_API_KEY"),
callback_manager=callback_manager
)
embeddings = HuggingFaceEmbeddings(
model_name=EMBEDDING_MODEL, # Используем константу
cache_folder="/app/.cache/huggingface" # Явно указываем путь к кэшу
)
logger.info(f"Models initialized successfully. Using embedding model: {EMBEDDING_MODEL}")
return llm, embeddings
except Exception as e:
logger.error(f"Model initialization error: {str(e)}")
logger.error(traceback.format_exc())
raise Exception(f"Model initialization failed: {str(e)}")
async def fetch_url(session, url):
cache_file = os.path.join(CACHE_DIR, f"{url.replace('/', '_').replace(':', '_')}.html")
# Проверяем кэш
if os.path.exists(cache_file):
with open(cache_file, 'r', encoding='utf-8') as f:
return url, f.read()
try:
async with session.get(url, ssl=False, timeout=30) as response:
if response.status == 200:
content = await response.text()
# Сохраняем в кэш
with open(cache_file, 'w', encoding='utf-8') as f:
f.write(content)
return url, content
else:
logger.warning(f"Failed to load {url}, status code: {response.status}")
return url, None
except Exception as e:
logger.error(f"Error fetching {url}: {str(e)}")
return url, None
def process_html_content(url, html_content):
if not html_content:
return None
soup = BeautifulSoup(html_content, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
# Get text content
text = soup.get_text()
# Clean up text
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk)
if not text.strip():
return None
return Document(page_content=text, metadata={"source": url})
async def load_all_urls(urls_to_process):
documents = []
async with aiohttp.ClientSession() as session:
tasks = [fetch_url(session, url) for url in urls_to_process]
results = await asyncio.gather(*tasks)
for url, content in results:
if content:
doc = process_html_content(url, content)
if doc:
documents.append(doc)
logger.info(f"Successfully processed content from {url}")
else:
logger.warning(f"No useful content extracted from {url}")
else:
logger.warning(f"Failed to load content from {url}")
return documents
async def build_knowledge_base_async(embeddings, force_rebuild=False):
"""
Асинхронное построение базы знаний.
Параметр force_rebuild позволяет принудительно обновить все URL.
"""
try:
logger.info("Starting knowledge base construction...")
kb_config = get_kb_config()
# Определяем URL для обработки
if force_rebuild:
urls_to_process = URLS
kb_config["processed_urls"] = []
logger.info("Forcing rebuild of entire knowledge base")
else:
urls_to_process = [url for url in URLS if url not in kb_config["processed_urls"]]
if not urls_to_process:
logger.info("No new URLs to process")
return FAISS.load_local(VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True)
logger.info(f"Processing {len(urls_to_process)} new URLs")
documents = await load_all_urls(urls_to_process)
if not documents:
if kb_config["processed_urls"] and os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
logger.info("No new documents to add, loading existing vector store")
return FAISS.load_local(VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True)
raise Exception("No documents were successfully loaded!")
logger.info(f"Total new documents loaded: {len(documents)}")
# Увеличиваем размер чанков
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=2500, # Увеличенный размер чанка
chunk_overlap=100
)
logger.info("Splitting documents into chunks...")
chunks = text_splitter.split_documents(documents)
logger.info(f"Created {len(chunks)} chunks")
# Если есть существующая база знаний и мы не выполняем полное обновление, добавляем к ней
if not force_rebuild and os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
logger.info("Loading existing vector store...")
vector_store = FAISS.load_local(VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True)
logger.info("Adding new documents to existing vector store...")
vector_store.add_documents(chunks)
else:
logger.info("Creating new vector store...")
vector_store = FAISS.from_documents(chunks, embeddings)
logger.info("Saving vector store...")
vector_store.save_local(folder_path=VECTOR_STORE_PATH, index_name="index")
# Обновляем конфигурацию
for url in urls_to_process:
if url not in kb_config["processed_urls"]:
kb_config["processed_urls"].append(url)
kb_config["version"] += 1
kb_config["last_update"] = datetime.now().isoformat()
save_kb_config(kb_config)
logger.info(f"Knowledge base updated to version {kb_config['version']}")
return vector_store
except Exception as e:
logger.error(f"Error in build_knowledge_base: {str(e)}")
traceback.print_exc()
raise Exception(f"Knowledge base creation failed: {str(e)}")
# Initialize models and knowledge base on startup
llm, embeddings = init_models()
vector_store = None
@app.on_event("startup")
async def startup_event():
global vector_store
# Только загружаем существующую базу при старте, не создаем новую
if os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
try:
vector_store = FAISS.load_local(
VECTOR_STORE_PATH,
embeddings,
allow_dangerous_deserialization=True
)
logger.info("Successfully loaded existing knowledge base")
except Exception as e:
logger.warning(f"Could not load existing knowledge base: {str(e)}")
vector_store = None
else:
logger.warning("No existing knowledge base found, please use /rebuild-kb endpoint to create one")
# API endpoints
@app.post("/chat", response_model=ChatResponse)
async def chat_endpoint(request: ChatRequest):
global vector_store
# Проверяем, инициализирована ли база знаний
if vector_store is None:
raise HTTPException(
status_code=503,
detail="Knowledge base not initialized. Please use /rebuild-kb endpoint first."
)
try:
# Retrieve context
context_docs = vector_store.similarity_search(request.message, k=3) # Ограничиваем количество документов
context_text = "\n".join([d.page_content for d in context_docs])
# Generate response
prompt_template = PromptTemplate.from_template('''
You are a helpful and polite legal assistant at Status Law.
You answer in the language in which the question was asked.
Answer the question based on the context provided.
If you cannot answer based on the context, say so politely and offer to contact Status Law directly via the following channels:
- For all users: +32465594521 (landline phone).
- For English and Swedish speakers only: +46728495129 (available on WhatsApp, Telegram, Signal, IMO).
- Provide a link to the contact form: [Contact Form](https://status.law/law-firm-contact-legal-protection/).
Context: {context}
Question: {question}
Response Guidelines:
1. Answer in the user's language
2. Cite sources when possible
3. Offer contact options if unsure
''')
chain = prompt_template | llm | StrOutputParser()
response = chain.invoke({
"context": context_text,
"question": request.message
})
# Log interaction
log_interaction(request.message, response, context_text)
return ChatResponse(response=response, context=context_text)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/rebuild-kb")
async def rebuild_knowledge_base(background_tasks: BackgroundTasks, force: bool = False):
"""
Rebuild knowledge base in the background
- force: если True, перестраивает всю базу знаний с нуля
"""
global vector_store
try:
# Запускаем в фоне
background_tasks.add_task(_rebuild_kb_task, force)
action = "rebuild" if force else "update"
return {"status": "success", "message": f"Knowledge base {action} started in background"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
async def _rebuild_kb_task(force: bool = False):
"""Фоновая задача для обновления базы знаний"""
global vector_store
try:
vector_store = await build_knowledge_base_async(embeddings, force_rebuild=force)
logger.info("Knowledge base rebuild completed successfully")
except Exception as e:
logger.error(f"Knowledge base rebuild failed: {str(e)}")
@app.get("/kb-status")
async def get_kb_status():
"""Get current knowledge base status"""
global vector_store
kb_config = get_kb_config()
return {
"initialized": vector_store is not None,
"version": kb_config["version"],
"total_urls": len(URLS),
"processed_urls": len(kb_config["processed_urls"]),
"pending_urls": len([url for url in URLS if url not in kb_config["processed_urls"]]),
"last_update": kb_config["last_update"]
}
def log_interaction(user_input: str, bot_response: str, context: str):
try:
kb_config = get_kb_config()
log_entry = {
"timestamp": datetime.now().isoformat(),
"user_input": user_input,
"bot_response": bot_response,
"context": context[:500],
"kb_version": kb_config["version"] # Используем актуальную версию
}
os.makedirs("chat_history", exist_ok=True)
with open("chat_history/chat_logs.json", "a", encoding="utf-8") as f:
f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
except Exception as e:
logger.error(f"Logging error: {str(e)}")
logger.error(traceback.format_exc())
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|