Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
from PIL import Image | |
from torchvision import transforms | |
from diffusers import DiffusionPipeline | |
# Define constants | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
MIN_IMAGE_SIZE = 256 | |
DEFAULT_IMAGE_SIZE = 1024 | |
MAX_PROMPT_LENGTH = 500 | |
# Check for GPU availability | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if device == "cpu": | |
print("Warning: Running on CPU. This may be very slow.") | |
dtype = torch.float16 if device == "cuda" else torch.float32 | |
def load_model(): | |
try: | |
return DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) | |
except Exception as e: | |
raise RuntimeError(f"Failed to load the model: {str(e)}") | |
# Load the diffusion pipeline | |
pipe = load_model() | |
def preprocess_image(image, target_size=(512, 512)): | |
# Preprocess the image for the VAE | |
preprocess = transforms.Compose([ | |
transforms.Resize(target_size, interpolation=transforms.InterpolationMode.LANCZOS), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]) | |
]) | |
image = preprocess(image).unsqueeze(0).to(device, dtype=dtype) | |
return image | |
def encode_image(image, vae): | |
# Encode the image using the VAE | |
with torch.no_grad(): | |
latents = vae.encode(image).latent_dist.sample() * 0.18215 | |
return latents | |
def validate_inputs(prompt, width, height, num_inference_steps): | |
if not prompt or len(prompt) > MAX_PROMPT_LENGTH: | |
raise ValueError(f"Prompt must be between 1 and {MAX_PROMPT_LENGTH} characters.") | |
if width % 8 != 0 or height % 8 != 0: | |
raise ValueError("Width and height must be divisible by 8.") | |
if width < MIN_IMAGE_SIZE or width > MAX_IMAGE_SIZE or height < MIN_IMAGE_SIZE or height > MAX_IMAGE_SIZE: | |
raise ValueError(f"Image dimensions must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}.") | |
if num_inference_steps < 1 or num_inference_steps > 50: | |
raise ValueError("Number of inference steps must be between 1 and 50.") | |
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=DEFAULT_IMAGE_SIZE, height=DEFAULT_IMAGE_SIZE, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
try: | |
validate_inputs(prompt, width, height, num_inference_steps) | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
if init_image is not None: | |
init_image = init_image.convert("RGB") | |
init_image = preprocess_image(init_image, (height, width)) | |
latents = encode_image(init_image, pipe.vae) | |
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear') | |
image = pipe( | |
prompt=prompt, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=0.0, | |
latents=latents | |
).images[0] | |
else: | |
image = pipe( | |
prompt=prompt, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=0.0 | |
).images[0] | |
return image, seed | |
except Exception as e: | |
raise gr.Error(str(e)) | |
# Define example prompts | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
"a surreal landscape with floating islands and waterfalls", | |
"a steampunk-inspired cityscape at sunset" | |
] | |
# CSS styling for the Japanese-inspired interface | |
css = """ | |
body { | |
background-color: #fff; | |
font-family: 'Noto Sans JP', sans-serif; | |
color: #333; | |
} | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
border: 2px solid #000; | |
padding: 20px; | |
background-color: #f7f7f7; | |
border-radius: 10px; | |
} | |
.gr-button { | |
background-color: #e60012; | |
color: #fff; | |
border: 2px solid #000; | |
} | |
.gr-button:hover { | |
background-color: #c20010; | |
} | |
.gr-slider, .gr-checkbox, .gr-textbox { | |
border: 2px solid #000; | |
} | |
.gr-accordion { | |
border: 2px solid #000; | |
background-color: #fff; | |
} | |
.gr-image { | |
border: 2px solid #000; | |
} | |
""" | |
# Create the Gradio interface | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(""" | |
# FLUX.1 [schnell] | |
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation | |
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)] | |
""") | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder=f"Enter your prompt (max {MAX_PROMPT_LENGTH} characters)", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
with gr.Row(): | |
init_image = gr.Image(label="Initial Image (optional)", type="pil") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=MIN_IMAGE_SIZE, | |
maximum=MAX_IMAGE_SIZE, | |
step=8, | |
value=DEFAULT_IMAGE_SIZE, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=MIN_IMAGE_SIZE, | |
maximum=MAX_IMAGE_SIZE, | |
step=8, | |
value=DEFAULT_IMAGE_SIZE, | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=4, | |
) | |
gr.Examples( | |
examples=examples, | |
fn=infer, | |
inputs=[prompt], | |
outputs=[result, seed], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps], | |
outputs=[result, seed] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |