File size: 7,011 Bytes
7f891bb
2e306db
 
126a4f5
2e306db
044186b
 
2e306db
7f891bb
2e306db
 
d2cb214
3ae9c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f891bb
2e306db
3ae9c83
2e306db
3ae9c83
044186b
 
3ae9c83
044186b
 
 
e514cac
044186b
 
 
 
 
 
 
 
3ae9c83
 
 
 
 
 
 
 
 
 
d2cb214
3ae9c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f891bb
2e306db
 
 
 
 
3ae9c83
 
2e306db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126a4f5
2e306db
 
 
 
 
 
 
 
 
 
 
 
3ae9c83
2e306db
 
 
 
aed3a85
5e46cf5
aed3a85
2e306db
 
 
 
 
 
 
 
 
 
 
 
 
 
3ae9c83
2e306db
3ae9c83
 
2e306db
 
 
3ae9c83
2e306db
3ae9c83
 
2e306db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aed3a85
2e306db
 
7f891bb
3ae9c83
 
5e46cf5
044186b
e514cac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import gradio as gr
import numpy as np
import random
import spaces
import torch
from PIL import Image
from torchvision import transforms
from diffusers import DiffusionPipeline

# Define constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
MIN_IMAGE_SIZE = 256
DEFAULT_IMAGE_SIZE = 1024
MAX_PROMPT_LENGTH = 500

# Check for GPU availability
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cpu":
    print("Warning: Running on CPU. This may be very slow.")

dtype = torch.float16 if device == "cuda" else torch.float32

def load_model():
    try:
        return DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
    except Exception as e:
        raise RuntimeError(f"Failed to load the model: {str(e)}")

# Load the diffusion pipeline
pipe = load_model()

def preprocess_image(image, target_size=(512, 512)):
    # Preprocess the image for the VAE
    preprocess = transforms.Compose([
        transforms.Resize(target_size, interpolation=transforms.InterpolationMode.LANCZOS),
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5])
    ])
    image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
    return image

def encode_image(image, vae):
    # Encode the image using the VAE
    with torch.no_grad():
        latents = vae.encode(image).latent_dist.sample() * 0.18215
    return latents

def validate_inputs(prompt, width, height, num_inference_steps):
    if not prompt or len(prompt) > MAX_PROMPT_LENGTH:
        raise ValueError(f"Prompt must be between 1 and {MAX_PROMPT_LENGTH} characters.")
    if width % 8 != 0 or height % 8 != 0:
        raise ValueError("Width and height must be divisible by 8.")
    if width < MIN_IMAGE_SIZE or width > MAX_IMAGE_SIZE or height < MIN_IMAGE_SIZE or height > MAX_IMAGE_SIZE:
        raise ValueError(f"Image dimensions must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}.")
    if num_inference_steps < 1 or num_inference_steps > 50:
        raise ValueError("Number of inference steps must be between 1 and 50.")

@spaces.GPU()
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=DEFAULT_IMAGE_SIZE, height=DEFAULT_IMAGE_SIZE, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    try:
        validate_inputs(prompt, width, height, num_inference_steps)
        
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
        generator = torch.Generator(device=device).manual_seed(seed)
        
        if init_image is not None:
            init_image = init_image.convert("RGB")
            init_image = preprocess_image(init_image, (height, width))
            latents = encode_image(init_image, pipe.vae)
            latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear')
            image = pipe(
                prompt=prompt,
                height=height,
                width=width,
                num_inference_steps=num_inference_steps,
                generator=generator,
                guidance_scale=0.0,
                latents=latents
            ).images[0]
        else:
            image = pipe(
                prompt=prompt,
                height=height,
                width=width,
                num_inference_steps=num_inference_steps,
                generator=generator,
                guidance_scale=0.0
            ).images[0]
        
        return image, seed
    except Exception as e:
        raise gr.Error(str(e))

# Define example prompts
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
    "a surreal landscape with floating islands and waterfalls",
    "a steampunk-inspired cityscape at sunset"
]

# CSS styling for the Japanese-inspired interface
css = """
body {
    background-color: #fff;
    font-family: 'Noto Sans JP', sans-serif;
    color: #333;
}
#col-container {
    margin: 0 auto;
    max-width: 520px;
    border: 2px solid #000;
    padding: 20px;
    background-color: #f7f7f7;
    border-radius: 10px;
}
.gr-button {
    background-color: #e60012;
    color: #fff;
    border: 2px solid #000;
}
.gr-button:hover {
    background-color: #c20010;
}
.gr-slider, .gr-checkbox, .gr-textbox {
    border: 2px solid #000;
}
.gr-accordion {
    border: 2px solid #000;
    background-color: #fff;
}
.gr-image {
    border: 2px solid #000;
}
"""

# Create the Gradio interface
with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
        # FLUX.1 [schnell]
        12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
        [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
        """)

        with gr.Row():
            prompt = gr.Textbox(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder=f"Enter your prompt (max {MAX_PROMPT_LENGTH} characters)",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)

        with gr.Row():
            init_image = gr.Image(label="Initial Image (optional)", type="pil")
            result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=MIN_IMAGE_SIZE,
                    maximum=MAX_IMAGE_SIZE,
                    step=8,
                    value=DEFAULT_IMAGE_SIZE,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=MIN_IMAGE_SIZE,
                    maximum=MAX_IMAGE_SIZE,
                    step=8,
                    value=DEFAULT_IMAGE_SIZE,
                )

            with gr.Row():
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )

        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
        outputs=[result, seed]
    )

if __name__ == "__main__":
    demo.launch()