Spaces:
Runtime error
Runtime error
File size: 7,011 Bytes
7f891bb 2e306db 126a4f5 2e306db 044186b 2e306db 7f891bb 2e306db d2cb214 3ae9c83 7f891bb 2e306db 3ae9c83 2e306db 3ae9c83 044186b 3ae9c83 044186b e514cac 044186b 3ae9c83 d2cb214 3ae9c83 7f891bb 2e306db 3ae9c83 2e306db 126a4f5 2e306db 3ae9c83 2e306db aed3a85 5e46cf5 aed3a85 2e306db 3ae9c83 2e306db 3ae9c83 2e306db 3ae9c83 2e306db 3ae9c83 2e306db aed3a85 2e306db 7f891bb 3ae9c83 5e46cf5 044186b e514cac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from PIL import Image
from torchvision import transforms
from diffusers import DiffusionPipeline
# Define constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
MIN_IMAGE_SIZE = 256
DEFAULT_IMAGE_SIZE = 1024
MAX_PROMPT_LENGTH = 500
# Check for GPU availability
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cpu":
print("Warning: Running on CPU. This may be very slow.")
dtype = torch.float16 if device == "cuda" else torch.float32
def load_model():
try:
return DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
except Exception as e:
raise RuntimeError(f"Failed to load the model: {str(e)}")
# Load the diffusion pipeline
pipe = load_model()
def preprocess_image(image, target_size=(512, 512)):
# Preprocess the image for the VAE
preprocess = transforms.Compose([
transforms.Resize(target_size, interpolation=transforms.InterpolationMode.LANCZOS),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
return image
def encode_image(image, vae):
# Encode the image using the VAE
with torch.no_grad():
latents = vae.encode(image).latent_dist.sample() * 0.18215
return latents
def validate_inputs(prompt, width, height, num_inference_steps):
if not prompt or len(prompt) > MAX_PROMPT_LENGTH:
raise ValueError(f"Prompt must be between 1 and {MAX_PROMPT_LENGTH} characters.")
if width % 8 != 0 or height % 8 != 0:
raise ValueError("Width and height must be divisible by 8.")
if width < MIN_IMAGE_SIZE or width > MAX_IMAGE_SIZE or height < MIN_IMAGE_SIZE or height > MAX_IMAGE_SIZE:
raise ValueError(f"Image dimensions must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}.")
if num_inference_steps < 1 or num_inference_steps > 50:
raise ValueError("Number of inference steps must be between 1 and 50.")
@spaces.GPU()
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=DEFAULT_IMAGE_SIZE, height=DEFAULT_IMAGE_SIZE, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
try:
validate_inputs(prompt, width, height, num_inference_steps)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
if init_image is not None:
init_image = init_image.convert("RGB")
init_image = preprocess_image(init_image, (height, width))
latents = encode_image(init_image, pipe.vae)
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear')
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
latents=latents
).images[0]
else:
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
return image, seed
except Exception as e:
raise gr.Error(str(e))
# Define example prompts
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
"a surreal landscape with floating islands and waterfalls",
"a steampunk-inspired cityscape at sunset"
]
# CSS styling for the Japanese-inspired interface
css = """
body {
background-color: #fff;
font-family: 'Noto Sans JP', sans-serif;
color: #333;
}
#col-container {
margin: 0 auto;
max-width: 520px;
border: 2px solid #000;
padding: 20px;
background-color: #f7f7f7;
border-radius: 10px;
}
.gr-button {
background-color: #e60012;
color: #fff;
border: 2px solid #000;
}
.gr-button:hover {
background-color: #c20010;
}
.gr-slider, .gr-checkbox, .gr-textbox {
border: 2px solid #000;
}
.gr-accordion {
border: 2px solid #000;
background-color: #fff;
}
.gr-image {
border: 2px solid #000;
}
"""
# Create the Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
""")
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder=f"Enter your prompt (max {MAX_PROMPT_LENGTH} characters)",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Row():
init_image = gr.Image(label="Initial Image (optional)", type="pil")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=DEFAULT_IMAGE_SIZE,
)
height = gr.Slider(
label="Height",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=DEFAULT_IMAGE_SIZE,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, seed]
)
if __name__ == "__main__":
demo.launch()
|