File size: 8,267 Bytes
7f891bb
2e306db
 
 
5a00d0e
044186b
 
13ab5d1
7f891bb
2e306db
da39f41
 
2e306db
d2cb214
7f891bb
df1e50c
c5a49a2
 
 
 
13ab5d1
 
cec333d
 
 
 
 
2e306db
69e75b1
044186b
cec333d
044186b
cec333d
044186b
e514cac
13ab5d1
044186b
 
 
 
 
13ab5d1
044186b
 
d2cb214
da39f41
 
 
 
69e75b1
cec333d
 
5b33905
f0decf0
5b33905
 
 
 
 
 
 
e6d3c53
 
5b33905
 
cec333d
5b33905
 
cec333d
5b33905
f0decf0
13ab5d1
 
da39f41
69e75b1
13ab5d1
 
 
 
 
 
 
 
da39f41
13ab5d1
 
 
 
 
 
 
2811e7f
878ec45
13ab5d1
 
5b33905
409e82d
13ab5d1
f0decf0
 
d027eec
 
 
 
409e82d
d027eec
cec333d
b54a3db
29a504c
13ab5d1
29a504c
 
 
 
 
 
 
 
 
13ab5d1
29a504c
 
cec333d
da39f41
 
7f891bb
2e306db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126a4f5
2e306db
 
 
 
 
 
 
 
 
 
 
 
da39f41
2e306db
 
 
 
aed3a85
5e46cf5
aed3a85
2e306db
 
 
 
 
 
 
 
 
 
 
 
 
 
da39f41
2e306db
da39f41
 
2e306db
 
 
da39f41
2e306db
da39f41
 
2e306db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ab5d1
 
da39f41
2e306db
 
7f891bb
da39f41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from torchvision import transforms
from diffusers import DiffusionPipeline, AutoencoderKL

# Define constants
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# Load the initial VAE model for preprocessing YAY
# Load the initial VAE model for preprocessing
vae_model_name = "runwayml/stable-diffusion-v1-5"  # Adjusted VAE model path
vae = AutoencoderKL.from_pretrained(vae_model_name, subfolder="vae").to(device)


# Load the FLUX diffusion pipeline with optimizations
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
pipe.enable_model_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.to(device)

def preprocess_image(image, image_size):
    preprocess = transforms.Compose([
        transforms.Resize((image_size, image_size)),
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5])
    ])
    image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
    print("Image processed successfully.")
    return image

def encode_image(image, vae):
    with torch.no_grad():
        latents = vae.encode(image).latent_dist.sample() * 0.18215
    print("Image encoded successfully.")
    return latents

@spaces.GPU()
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)

    fallback_image = Image.new("RGB", (width, height), (255, 0, 0))  # Red image as a fallback

    if init_image is None:
        # text2img case
        try:
            result = pipe(
                prompt=prompt,
                height=height,
                width=width,
                num_inference_steps=num_inference_steps,
                generator=generator,
                guidance_scale=0.0,
                max_sequence_length=256
            )
            image = result.images[0]
            return image, seed
        except Exception as e:
            print(f"Pipeline call failed with error: {e}")
            return fallback_image, seed
    else:
        # img2img case
        print("Initial image provided, starting preprocessing...")
        vae_image_size = 1024  # Using FLUX VAE sample size for preprocessing
        init_image = init_image.convert("RGB")
        init_image = preprocess_image(init_image, vae_image_size)
        
        print("Starting encoding of the image...")
        latents = encode_image(init_image, vae)

        print(f"Latents shape after encoding: {latents.shape}")
        
        # Ensure the latents size matches the expected input size for the FLUX model
        print("Interpolating latents to match model's input size...")
        latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8))
        
        latent_channels = 16  # Using FLUX VAE latent channels
        print(f"Latent channels from VAE: {latent_channels}, expected by FLUX model: {pipe.vae.config.latent_channels}")
        
        if latent_channels != pipe.vae.config.latent_channels:
            print(f"Adjusting latent channels from {latent_channels} to {pipe.vae.config.latent_channels}")
            conv = torch.nn.Conv2d(latent_channels, pipe.vae.config.latent_channels, kernel_size=1).to(device, dtype=dtype)
            latents = conv(latents)

        latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, pipe.vae.config.latent_channels)
        print(f"Latents shape after permutation: {latents.shape}")

        try:
            print("Sending latents to the FLUX transformer...")
            # Determine if 'timesteps' is required for the transformer
            if hasattr(pipe.transformer, 'forward') and hasattr(pipe.transformer.forward, '__code__') and 'timesteps' in pipe.transformer.forward.__code__.co_varnames:
                timestep = torch.tensor([num_inference_steps], device=device, dtype=dtype)
                _ = pipe.transformer(latents, timesteps=timestep)
            else:
                _ = pipe.transformer(latents)
        except Exception as e:
            print(f"Transformer call failed with error: {e}. Skipping transformer step.")
            return fallback_image, seed

        try:
            print("Generating final image with the FLUX pipeline...")
            image = pipe(
                prompt=prompt,
                height=height,
                width=width,
                num_inference_steps=num_inference_steps,
                generator=generator,
                guidance_scale=0.0,
                latents=latents
            ).images[0]
            print("Image generation completed.")
        except Exception as e:
            print(f"Pipeline call with latents failed with error: {e}")
            return fallback_image, seed
    
    return image, seed

# Define example prompts
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

# CSS styling for the Japanese-inspired interface
css = """
body {
    background-color: #fff;
    font-family: 'Noto Sans JP', sans-serif;
    color: #333;
}
#col-container {
    margin: 0 auto;
    max-width: 520px;
    border: 2px solid #000;
    padding: 20px;
    background-color: #f7f7f7;
    border-radius: 10px;
}
.gr-button {
    background-color: #e60012;
    color: #fff;
    border: 2px solid #000;
}
.gr-button:hover {
    background-color: #c20010;
}
.gr-slider, .gr-checkbox, .gr-textbox {
    border: 2px solid #000;
}
.gr-accordion {
    border: 2px solid #000;
    background-color: #fff;
}
.gr-image {
    border: 2px solid #000;
}
"""

# Create the Gradio interface
with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
        # FLUX.1 [schnell]
        12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
        [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
        """)

        with gr.Row():
            prompt = gr.Textbox(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)

        with gr.Row():
            init_image = gr.Image(label="Initial Image (optional)", type="pil")
            result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )

        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    run_button.click(
        infer,
        inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
        outputs=[result, seed]
    )

demo.launch()