Spaces:
Runtime error
Runtime error
File size: 8,267 Bytes
7f891bb 2e306db 5a00d0e 044186b 13ab5d1 7f891bb 2e306db da39f41 2e306db d2cb214 7f891bb df1e50c c5a49a2 13ab5d1 cec333d 2e306db 69e75b1 044186b cec333d 044186b cec333d 044186b e514cac 13ab5d1 044186b 13ab5d1 044186b d2cb214 da39f41 69e75b1 cec333d 5b33905 f0decf0 5b33905 e6d3c53 5b33905 cec333d 5b33905 cec333d 5b33905 f0decf0 13ab5d1 da39f41 69e75b1 13ab5d1 da39f41 13ab5d1 2811e7f 878ec45 13ab5d1 5b33905 409e82d 13ab5d1 f0decf0 d027eec 409e82d d027eec cec333d b54a3db 29a504c 13ab5d1 29a504c 13ab5d1 29a504c cec333d da39f41 7f891bb 2e306db 126a4f5 2e306db da39f41 2e306db aed3a85 5e46cf5 aed3a85 2e306db da39f41 2e306db da39f41 2e306db da39f41 2e306db da39f41 2e306db 13ab5d1 da39f41 2e306db 7f891bb da39f41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from torchvision import transforms
from diffusers import DiffusionPipeline, AutoencoderKL
# Define constants
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Load the initial VAE model for preprocessing YAY
# Load the initial VAE model for preprocessing
vae_model_name = "runwayml/stable-diffusion-v1-5" # Adjusted VAE model path
vae = AutoencoderKL.from_pretrained(vae_model_name, subfolder="vae").to(device)
# Load the FLUX diffusion pipeline with optimizations
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
pipe.enable_model_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.to(device)
def preprocess_image(image, image_size):
preprocess = transforms.Compose([
transforms.Resize((image_size, image_size)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
print("Image processed successfully.")
return image
def encode_image(image, vae):
with torch.no_grad():
latents = vae.encode(image).latent_dist.sample() * 0.18215
print("Image encoded successfully.")
return latents
@spaces.GPU()
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
fallback_image = Image.new("RGB", (width, height), (255, 0, 0)) # Red image as a fallback
if init_image is None:
# text2img case
try:
result = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
max_sequence_length=256
)
image = result.images[0]
return image, seed
except Exception as e:
print(f"Pipeline call failed with error: {e}")
return fallback_image, seed
else:
# img2img case
print("Initial image provided, starting preprocessing...")
vae_image_size = 1024 # Using FLUX VAE sample size for preprocessing
init_image = init_image.convert("RGB")
init_image = preprocess_image(init_image, vae_image_size)
print("Starting encoding of the image...")
latents = encode_image(init_image, vae)
print(f"Latents shape after encoding: {latents.shape}")
# Ensure the latents size matches the expected input size for the FLUX model
print("Interpolating latents to match model's input size...")
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8))
latent_channels = 16 # Using FLUX VAE latent channels
print(f"Latent channels from VAE: {latent_channels}, expected by FLUX model: {pipe.vae.config.latent_channels}")
if latent_channels != pipe.vae.config.latent_channels:
print(f"Adjusting latent channels from {latent_channels} to {pipe.vae.config.latent_channels}")
conv = torch.nn.Conv2d(latent_channels, pipe.vae.config.latent_channels, kernel_size=1).to(device, dtype=dtype)
latents = conv(latents)
latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, pipe.vae.config.latent_channels)
print(f"Latents shape after permutation: {latents.shape}")
try:
print("Sending latents to the FLUX transformer...")
# Determine if 'timesteps' is required for the transformer
if hasattr(pipe.transformer, 'forward') and hasattr(pipe.transformer.forward, '__code__') and 'timesteps' in pipe.transformer.forward.__code__.co_varnames:
timestep = torch.tensor([num_inference_steps], device=device, dtype=dtype)
_ = pipe.transformer(latents, timesteps=timestep)
else:
_ = pipe.transformer(latents)
except Exception as e:
print(f"Transformer call failed with error: {e}. Skipping transformer step.")
return fallback_image, seed
try:
print("Generating final image with the FLUX pipeline...")
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
latents=latents
).images[0]
print("Image generation completed.")
except Exception as e:
print(f"Pipeline call with latents failed with error: {e}")
return fallback_image, seed
return image, seed
# Define example prompts
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
# CSS styling for the Japanese-inspired interface
css = """
body {
background-color: #fff;
font-family: 'Noto Sans JP', sans-serif;
color: #333;
}
#col-container {
margin: 0 auto;
max-width: 520px;
border: 2px solid #000;
padding: 20px;
background-color: #f7f7f7;
border-radius: 10px;
}
.gr-button {
background-color: #e60012;
color: #fff;
border: 2px solid #000;
}
.gr-button:hover {
background-color: #c20010;
}
.gr-slider, .gr-checkbox, .gr-textbox {
border: 2px solid #000;
}
.gr-accordion {
border: 2px solid #000;
background-color: #fff;
}
.gr-image {
border: 2px solid #000;
}
"""
# Create the Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
""")
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Row():
init_image = gr.Image(label="Initial Image (optional)", type="pil")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
run_button.click(
infer,
inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, seed]
)
demo.launch()
|