Spaces:
Runtime error
Runtime error
File size: 4,915 Bytes
d53c0bb 7f891bb 2e306db 044186b a7d057d 7f891bb d2b0012 2e306db d2cb214 7f891bb a7d057d d2b0012 d53c0bb 69e75b1 044186b 6af450a 044186b cec333d 044186b a7d057d 044186b a7d057d 6b927be 044186b d2cb214 da39f41 6af450a 69e75b1 6af450a d2b0012 5b33905 d2b0012 6af450a d2b0012 6af450a a7d057d 6af450a a7d057d bc9da49 13ab5d1 a7d057d 5b33905 6b927be d2b0012 29a504c d2b0012 6af450a 6b927be d2b0012 2e306db d53ee34 d2b0012 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import spaces
import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
from torchvision import transforms
from diffusers import DiffusionPipeline
# Constants
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Load FLUX model
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
pipe.enable_model_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
def preprocess_image(image, image_size):
preprocess = transforms.Compose([
transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.LANCZOS),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
return image
def check_shapes(latents):
print(f"Latent shape: {latents.shape}")
if len(latents.shape) == 4:
print(f"Expected transformer input shape: {(1, latents.shape[1] * latents.shape[2] * latents.shape[3])}")
elif len(latents.shape) == 2:
print(f"Reshaped latent shape: {latents.shape}")
else:
print(f"Unexpected latent shape: {latents.shape}")
@spaces.GPU()
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
try:
if init_image is None:
# text2img case
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
else:
# img2img case
init_image = init_image.convert("RGB")
init_image = preprocess_image(init_image, 1024) # Using 1024 as FLUX VAE sample size
# Encode the image using FLUX VAE
latents = pipe.vae.encode(init_image).latent_dist.sample() * 0.18215
# Ensure latents are the correct shape
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear')
# Check shapes before reshaping
check_shapes(latents)
# Reshape latents to match the expected input shape of the transformer
latents = latents.reshape(1, -1)
# Check shapes after reshaping
check_shapes(latents)
# Print the type and shape of each argument
print(f"prompt type: {type(prompt)}, value: {prompt}")
print(f"height type: {type(height)}, value: {height}")
print(f"width type: {type(width)}, value: {width}")
print(f"num_inference_steps type: {type(num_inference_steps)}, value: {num_inference_steps}")
print(f"generator type: {type(generator)}")
print(f"guidance_scale type: {type(0.0)}, value: 0.0")
print(f"latents type: {type(latents)}, shape: {latents.shape}")
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
latents=latents
).images[0]
return image, seed
except Exception as e:
print(f"Error during inference: {e}")
import traceback
traceback.print_exc()
return Image.new("RGB", (width, height), (255, 0, 0)), seed # Red fallback image
# Gradio interface setup
with gr.Blocks() as demo:
with gr.Row():
prompt = gr.Textbox(label="Prompt")
init_image = gr.Image(label="Initial Image (optional)", type="pil")
with gr.Row():
generate = gr.Button("Generate")
with gr.Row():
result = gr.Image(label="Result")
seed_output = gr.Number(label="Seed")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=4)
generate.click(
infer,
inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, seed_output]
)
demo.launch() |