Spaces:
Runtime error
Runtime error
File size: 7,503 Bytes
7f891bb 2e306db 126a4f5 2e306db 044186b 2e306db 7f891bb 2e306db da39f41 2e306db d2cb214 7f891bb 2e306db da39f41 2e306db 69e75b1 b54a3db 044186b 69e75b1 044186b 69e75b1 044186b e514cac b54a3db 044186b b54a3db 044186b b54a3db 044186b d2cb214 da39f41 b54a3db da39f41 b54a3db da39f41 69e75b1 b54a3db da39f41 b54a3db da39f41 69e75b1 da39f41 878ec45 b54a3db da39f41 b54a3db 3ae9c83 878ec45 b54a3db 878ec45 b54a3db 2811e7f b54a3db 878ec45 409e82d b54a3db da39f41 b54a3db da39f41 b54a3db da39f41 7f891bb 69e75b1 2811e7f b54a3db 409e82d 2e306db 126a4f5 2e306db da39f41 2e306db aed3a85 5e46cf5 aed3a85 2e306db da39f41 2e306db da39f41 2e306db da39f41 2e306db da39f41 2e306db da39f41 2e306db 7f891bb da39f41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from PIL import Image
from torchvision import transforms
from diffusers import DiffusionPipeline
# Define constants
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Load the diffusion pipeline
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
def preprocess_image(image, image_size):
print(f"Preprocessing image to size: {image_size}x{image_size}")
preprocess = transforms.Compose([
transforms.Resize((image_size, image_size)), # Use model-specific size
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]) # Ensure this matches the VAE's training normalization
])
image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
print(f"Image shape after preprocessing: {image.shape}")
return image
def encode_image(image, vae):
print("Encoding image using the VAE")
with torch.no_grad():
latents = vae.encode(image).latent_dist.sample() * 0.18215
print(f"Latents shape after encoding: {latents.shape}")
return latents
@spaces.GPU()
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
print(f"Inference started with prompt: {prompt}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
print(f"Using seed: {seed}")
generator = torch.Generator().manual_seed(seed)
# Get the expected image size for the VAE
vae_image_size = pipe.vae.config.sample_size
print(f"Expected VAE image size: {vae_image_size}")
if init_image is not None:
print("Initial image provided, processing img2img")
init_image = init_image.convert("RGB")
init_image = preprocess_image(init_image, vae_image_size)
latents = encode_image(init_image, pipe.vae)
# Interpolating latents
print(f"Interpolating latents to size: {(height // 8, width // 8)}")
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8))
print(f"Latents shape after interpolation: {latents.shape}")
# Convert latent channels to 64 as expected by the transformer
latent_channels = pipe.vae.config.latent_channels
print(f"Expected latent channels: 64, current latent channels: {latent_channels}")
if latent_channels != 64:
print(f"Converting latent channels from {latent_channels} to 64")
conv = torch.nn.Conv2d(latent_channels, 64, kernel_size=1).to(device, dtype=dtype)
latents = conv(latents)
print(f"Latents shape after channel conversion: {latents.shape}")
# Reshape latents to match the transformer's input expectations
latents = latents.view(1, 64, height // 8, width // 8)
print(f"Latents shape after reshaping: {latents.shape}")
# Avoid flattening, ensure latents are in the expected shape for the transformer
# Adding extra debug to understand what transformer expects
try:
print("Calling the transformer with latents")
# Dummy call to transformer to understand the shape requirement
_ = pipe.transformer(latents)
print("Transformer call succeeded")
except Exception as e:
print(f"Transformer call failed with error: {e}")
raise
print("Calling the diffusion pipeline with latents")
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
latents=latents
).images[0]
else:
print("No initial image provided, processing text2img")
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
print("Inference complete")
return image, seed
# Define example prompts
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
# CSS styling for the Japanese-inspired interface
css = """
body {
background-color: #fff;
font-family: 'Noto Sans JP', sans-serif;
color: #333;
}
#col-container {
margin: 0 auto;
max-width: 520px;
border: 2px solid #000;
padding: 20px;
background-color: #f7f7f7;
border-radius: 10px;
}
.gr-button {
background-color: #e60012;
color: #fff;
border: 2px solid #000;
}
.gr-button:hover {
background-color: #c20010;
}
.gr-slider, .gr-checkbox, .gr-textbox {
border: 2px solid #000;
}
.gr-accordion {
border: 2px solid #000;
background-color: #fff;
}
.gr-image {
border: 2px solid #000;
}
"""
# Create the Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
""")
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Row():
init_image = gr.Image(label="Initial Image (optional)", type="pil")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, seed]
)
demo.launch()
|