File size: 7,503 Bytes
7f891bb
2e306db
 
126a4f5
2e306db
044186b
 
2e306db
7f891bb
2e306db
da39f41
 
2e306db
d2cb214
7f891bb
2e306db
da39f41
2e306db
69e75b1
b54a3db
044186b
69e75b1
044186b
69e75b1
044186b
e514cac
b54a3db
044186b
 
 
b54a3db
044186b
 
b54a3db
044186b
 
d2cb214
da39f41
b54a3db
da39f41
 
b54a3db
da39f41
69e75b1
 
 
b54a3db
da39f41
 
b54a3db
da39f41
69e75b1
da39f41
878ec45
b54a3db
 
da39f41
b54a3db
3ae9c83
878ec45
 
b54a3db
878ec45
b54a3db
2811e7f
 
b54a3db
878ec45
 
 
 
 
409e82d
 
 
 
 
 
 
 
 
 
b54a3db
 
da39f41
 
 
 
 
 
 
 
 
 
b54a3db
da39f41
 
 
 
 
 
 
 
 
b54a3db
da39f41
7f891bb
69e75b1
2811e7f
b54a3db
409e82d
2e306db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126a4f5
2e306db
 
 
 
 
 
 
 
 
 
 
 
da39f41
2e306db
 
 
 
aed3a85
5e46cf5
aed3a85
2e306db
 
 
 
 
 
 
 
 
 
 
 
 
 
da39f41
2e306db
da39f41
 
2e306db
 
 
da39f41
2e306db
da39f41
 
2e306db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da39f41
2e306db
 
7f891bb
da39f41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import gradio as gr
import numpy as np
import random
import spaces
import torch
from PIL import Image
from torchvision import transforms
from diffusers import DiffusionPipeline

# Define constants
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# Load the diffusion pipeline
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)

def preprocess_image(image, image_size):
    print(f"Preprocessing image to size: {image_size}x{image_size}")
    preprocess = transforms.Compose([
        transforms.Resize((image_size, image_size)),  # Use model-specific size
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5])  # Ensure this matches the VAE's training normalization
    ])
    image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
    print(f"Image shape after preprocessing: {image.shape}")
    return image

def encode_image(image, vae):
    print("Encoding image using the VAE")
    with torch.no_grad():
        latents = vae.encode(image).latent_dist.sample() * 0.18215
    print(f"Latents shape after encoding: {latents.shape}")
    return latents

@spaces.GPU()
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    print(f"Inference started with prompt: {prompt}")
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    print(f"Using seed: {seed}")
    generator = torch.Generator().manual_seed(seed)

    # Get the expected image size for the VAE
    vae_image_size = pipe.vae.config.sample_size
    print(f"Expected VAE image size: {vae_image_size}")
    
    if init_image is not None:
        print("Initial image provided, processing img2img")
        init_image = init_image.convert("RGB")
        init_image = preprocess_image(init_image, vae_image_size)
        latents = encode_image(init_image, pipe.vae)

        # Interpolating latents
        print(f"Interpolating latents to size: {(height // 8, width // 8)}")
        latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8))
        print(f"Latents shape after interpolation: {latents.shape}")
        
        # Convert latent channels to 64 as expected by the transformer
        latent_channels = pipe.vae.config.latent_channels
        print(f"Expected latent channels: 64, current latent channels: {latent_channels}")
        if latent_channels != 64:
            print(f"Converting latent channels from {latent_channels} to 64")
            conv = torch.nn.Conv2d(latent_channels, 64, kernel_size=1).to(device, dtype=dtype)
            latents = conv(latents)
            print(f"Latents shape after channel conversion: {latents.shape}")

        # Reshape latents to match the transformer's input expectations
        latents = latents.view(1, 64, height // 8, width // 8)
        print(f"Latents shape after reshaping: {latents.shape}")

        # Avoid flattening, ensure latents are in the expected shape for the transformer
        # Adding extra debug to understand what transformer expects
        try:
            print("Calling the transformer with latents")
            # Dummy call to transformer to understand the shape requirement
            _ = pipe.transformer(latents)
            print("Transformer call succeeded")
        except Exception as e:
            print(f"Transformer call failed with error: {e}")
            raise

        print("Calling the diffusion pipeline with latents")
        image = pipe(
            prompt=prompt,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            generator=generator,
            guidance_scale=0.0,
            latents=latents
        ).images[0]
    else:
        print("No initial image provided, processing text2img")
        image = pipe(
            prompt=prompt,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            generator=generator,
            guidance_scale=0.0
        ).images[0]
    
    print("Inference complete")
    return image, seed





# Define example prompts
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

# CSS styling for the Japanese-inspired interface
css = """
body {
    background-color: #fff;
    font-family: 'Noto Sans JP', sans-serif;
    color: #333;
}
#col-container {
    margin: 0 auto;
    max-width: 520px;
    border: 2px solid #000;
    padding: 20px;
    background-color: #f7f7f7;
    border-radius: 10px;
}
.gr-button {
    background-color: #e60012;
    color: #fff;
    border: 2px solid #000;
}
.gr-button:hover {
    background-color: #c20010;
}
.gr-slider, .gr-checkbox, .gr-textbox {
    border: 2px solid #000;
}
.gr-accordion {
    border: 2px solid #000;
    background-color: #fff;
}
.gr-image {
    border: 2px solid #000;
}
"""

# Create the Gradio interface
with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
        # FLUX.1 [schnell]
        12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
        [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
        """)

        with gr.Row():
            prompt = gr.Textbox(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)

        with gr.Row():
            init_image = gr.Image(label="Initial Image (optional)", type="pil")
            result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )

        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
        outputs=[result, seed]
    )

demo.launch()