|
from typing import Optional, Tuple, List |
|
from enum import Enum |
|
from config import agent, patients_collection, analysis_collection, alerts_collection, logger |
|
from models import RiskLevel |
|
from utils import ( |
|
structure_medical_response, |
|
compute_file_content_hash, |
|
compute_patient_data_hash, |
|
serialize_patient, |
|
broadcast_notification |
|
) |
|
from datetime import datetime |
|
import asyncio |
|
import json |
|
import re |
|
import os |
|
class NotificationType(str, Enum): |
|
RISK_ALERT = "risk_alert" |
|
SYSTEM = "system" |
|
MESSAGE = "message" |
|
|
|
class NotificationStatus(str, Enum): |
|
UNREAD = "unread" |
|
READ = "read" |
|
ARCHIVED = "archived" |
|
|
|
async def create_alert(patient_id: str, risk_data: dict): |
|
try: |
|
alert_doc = { |
|
"patient_id": patient_id, |
|
"type": "suicide_risk", |
|
"level": risk_data["level"], |
|
"score": risk_data["score"], |
|
"factors": risk_data["factors"], |
|
"timestamp": datetime.utcnow(), |
|
"acknowledged": False, |
|
"notification": { |
|
"type": "risk_alert", |
|
"status": "unread", |
|
"title": f"Suicide Risk: {risk_data['level'].capitalize()}", |
|
"message": f"Patient {patient_id} shows {risk_data['level']} risk factors", |
|
"icon": "⚠️", |
|
"action_url": f"/patient/{patient_id}/risk-assessment", |
|
"priority": "high" if risk_data["level"] in ["high", "severe"] else "medium" |
|
} |
|
} |
|
|
|
await alerts_collection.insert_one(alert_doc) |
|
|
|
|
|
await broadcast_notification(alert_doc["notification"]) |
|
|
|
logger.warning(f"⚠️ Created suicide risk alert for patient {patient_id}") |
|
return alert_doc |
|
except Exception as e: |
|
logger.error(f"Failed to create alert: {str(e)}") |
|
raise |
|
async def analyze_patient_report( |
|
patient_id: Optional[str], |
|
report_content: str, |
|
file_type: str, |
|
file_content: bytes |
|
): |
|
"""Analyze a patient report and create alerts for risks""" |
|
identifier = patient_id if patient_id else compute_file_content_hash(file_content) |
|
report_data = {"identifier": identifier, "content": report_content, "file_type": file_type} |
|
report_hash = compute_patient_data_hash(report_data) |
|
logger.info(f"🧾 Analyzing report for identifier: {identifier}") |
|
|
|
|
|
existing_analysis = await analysis_collection.find_one( |
|
{"identifier": identifier, "report_hash": report_hash} |
|
) |
|
if existing_analysis: |
|
logger.info(f"✅ No changes in report data for {identifier}, skipping analysis") |
|
return existing_analysis |
|
|
|
try: |
|
|
|
prompt = ( |
|
"You are a clinical decision support AI. Analyze the following patient report:\n" |
|
"1. Summarize the patient's medical history.\n" |
|
"2. Identify risks or red flags (including mental health and suicide risk).\n" |
|
"3. Highlight missed diagnoses or treatments.\n" |
|
"4. Suggest next clinical steps.\n" |
|
f"\nPatient Report ({file_type}):\n{'-'*40}\n{report_content[:10000]}" |
|
) |
|
|
|
raw_response = agent.chat( |
|
message=prompt, |
|
history=[], |
|
temperature=0.7, |
|
max_new_tokens=1024 |
|
) |
|
structured_response = structure_medical_response(raw_response) |
|
|
|
|
|
risk_level, risk_score, risk_factors = detect_suicide_risk(raw_response) |
|
suicide_risk = { |
|
"level": risk_level.value, |
|
"score": risk_score, |
|
"factors": risk_factors |
|
} |
|
|
|
|
|
analysis_doc = { |
|
"identifier": identifier, |
|
"patient_id": patient_id, |
|
"timestamp": datetime.utcnow(), |
|
"summary": structured_response, |
|
"suicide_risk": suicide_risk, |
|
"raw": raw_response, |
|
"report_hash": report_hash, |
|
"file_type": file_type |
|
} |
|
|
|
await analysis_collection.update_one( |
|
{"identifier": identifier, "report_hash": report_hash}, |
|
{"$set": analysis_doc}, |
|
upsert=True |
|
) |
|
|
|
|
|
if patient_id and risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]: |
|
await create_alert(patient_id, suicide_risk) |
|
|
|
logger.info(f"✅ Stored analysis for identifier {identifier}") |
|
return analysis_doc |
|
|
|
except Exception as e: |
|
logger.error(f"Error analyzing report for {identifier}: {str(e)}") |
|
error_alert = { |
|
"identifier": identifier, |
|
"type": "system_error", |
|
"level": "high", |
|
"message": f"Report analysis failed: {str(e)}", |
|
"timestamp": datetime.utcnow(), |
|
"acknowledged": False, |
|
"notification": { |
|
"type": NotificationType.SYSTEM, |
|
"status": NotificationStatus.UNREAD, |
|
"title": "Report Analysis Error", |
|
"message": f"Failed to analyze report for {'patient ' + patient_id if patient_id else 'unknown identifier'}", |
|
"icon": "❌", |
|
"action_url": "/system/errors", |
|
"priority": "high" |
|
} |
|
} |
|
await alerts_collection.insert_one(error_alert) |
|
raise |
|
|
|
async def analyze_patient(patient: dict): |
|
"""Analyze complete patient record and create alerts for risks""" |
|
try: |
|
serialized = serialize_patient(patient) |
|
patient_id = serialized.get("fhir_id") |
|
patient_hash = compute_patient_data_hash(serialized) |
|
logger.info(f"🧾 Analyzing patient: {patient_id}") |
|
|
|
|
|
existing_analysis = await analysis_collection.find_one({"patient_id": patient_id}) |
|
if existing_analysis and existing_analysis.get("data_hash") == patient_hash: |
|
logger.info(f"✅ No changes in patient data for {patient_id}, skipping analysis") |
|
return |
|
|
|
|
|
doc = json.dumps(serialized, indent=2) |
|
message = ( |
|
"You are a clinical decision support AI.\n\n" |
|
"Given the patient document below:\n" |
|
"1. Summarize the patient's medical history.\n" |
|
"2. Identify risks or red flags (including mental health and suicide risk).\n" |
|
"3. Highlight missed diagnoses or treatments.\n" |
|
"4. Suggest next clinical steps.\n" |
|
f"\nPatient Document:\n{'-'*40}\n{doc[:10000]}" |
|
) |
|
|
|
raw = agent.chat(message=message, history=[], temperature=0.7, max_new_tokens=1024) |
|
structured = structure_medical_response(raw) |
|
|
|
|
|
risk_level, risk_score, risk_factors = detect_suicide_risk(raw) |
|
suicide_risk = { |
|
"level": risk_level.value, |
|
"score": risk_score, |
|
"factors": risk_factors |
|
} |
|
|
|
|
|
analysis_doc = { |
|
"identifier": patient_id, |
|
"patient_id": patient_id, |
|
"timestamp": datetime.utcnow(), |
|
"summary": structured, |
|
"suicide_risk": suicide_risk, |
|
"raw": raw, |
|
"data_hash": patient_hash |
|
} |
|
|
|
await analysis_collection.update_one( |
|
{"identifier": patient_id}, |
|
{"$set": analysis_doc}, |
|
upsert=True |
|
) |
|
|
|
|
|
if risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]: |
|
await create_alert(patient_id, suicide_risk) |
|
|
|
logger.info(f"✅ Stored analysis for patient {patient_id}") |
|
|
|
except Exception as e: |
|
logger.error(f"Error analyzing patient: {str(e)}") |
|
error_alert = { |
|
"patient_id": patient_id if 'patient_id' in locals() else "unknown", |
|
"type": "system_error", |
|
"level": "high", |
|
"message": f"Patient analysis failed: {str(e)}", |
|
"timestamp": datetime.utcnow(), |
|
"acknowledged": False, |
|
"notification": { |
|
"type": NotificationType.SYSTEM, |
|
"status": NotificationStatus.UNREAD, |
|
"title": "Analysis Error", |
|
"message": f"Failed to analyze patient {patient_id if 'patient_id' in locals() else 'unknown'}", |
|
"icon": "❌", |
|
"action_url": "/system/errors", |
|
"priority": "high" |
|
} |
|
} |
|
await alerts_collection.insert_one(error_alert) |
|
raise |
|
|
|
def detect_suicide_risk(text: str) -> Tuple[RiskLevel, float, List[str]]: |
|
"""Detect suicide risk level from text analysis""" |
|
suicide_keywords = [ |
|
'suicide', 'suicidal', 'kill myself', 'end my life', |
|
'want to die', 'self-harm', 'self harm', 'hopeless', |
|
'no reason to live', 'plan to die' |
|
] |
|
explicit_mentions = [kw for kw in suicide_keywords if kw in text.lower()] |
|
if not explicit_mentions: |
|
return RiskLevel.NONE, 0.0, [] |
|
|
|
try: |
|
|
|
assessment_prompt = ( |
|
"Assess the suicide risk level based on this text. " |
|
"Consider frequency, specificity, and severity of statements. " |
|
"Respond with JSON format: {\"risk_level\": \"low/moderate/high/severe\", " |
|
"\"risk_score\": 0-1, \"factors\": [\"list of risk factors\"]}\n\n" |
|
f"Text to assess:\n{text}" |
|
) |
|
|
|
response = agent.chat( |
|
message=assessment_prompt, |
|
history=[], |
|
temperature=0.2, |
|
max_new_tokens=256 |
|
) |
|
|
|
|
|
json_match = re.search(r'\{.*\}', response, re.DOTALL) |
|
if json_match: |
|
assessment = json.loads(json_match.group()) |
|
return ( |
|
RiskLevel(assessment.get("risk_level", "none").lower()), |
|
float(assessment.get("risk_score", 0)), |
|
assessment.get("factors", []) |
|
) |
|
except Exception as e: |
|
logger.error(f"Error in suicide risk assessment: {e}") |
|
|
|
|
|
risk_score = min(0.1 * len(explicit_mentions), 0.9) |
|
if risk_score > 0.7: |
|
return RiskLevel.HIGH, risk_score, explicit_mentions |
|
elif risk_score > 0.4: |
|
return RiskLevel.MODERATE, risk_score, explicit_mentions |
|
return RiskLevel.LOW, risk_score, explicit_mentions |