File size: 10,657 Bytes
57bcbf7 848a6a1 57bcbf7 848a6a1 5b26f80 57bcbf7 9d6bcd0 848a6a1 57bcbf7 848a6a1 cb8e838 848a6a1 0e8f161 cb8e838 848a6a1 0e8f161 848a6a1 57bcbf7 848a6a1 57bcbf7 848a6a1 57bcbf7 848a6a1 57bcbf7 848a6a1 57bcbf7 848a6a1 57bcbf7 848a6a1 57bcbf7 848a6a1 57bcbf7 848a6a1 57bcbf7 848a6a1 5b26f80 57bcbf7 848a6a1 57bcbf7 5b26f80 848a6a1 57bcbf7 0344bc2 57bcbf7 848a6a1 57bcbf7 848a6a1 57bcbf7 5b26f80 57bcbf7 5b26f80 57bcbf7 848a6a1 57bcbf7 5b26f80 848a6a1 57bcbf7 848a6a1 57bcbf7 848a6a1 57bcbf7 848a6a1 57bcbf7 848a6a1 57bcbf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
from typing import Optional, Tuple, List
from enum import Enum
from config import agent, patients_collection, analysis_collection, alerts_collection, logger
from models import RiskLevel
from utils import (
structure_medical_response,
compute_file_content_hash,
compute_patient_data_hash,
serialize_patient,
broadcast_notification
)
from datetime import datetime
import asyncio
import json
import re
import os
class NotificationType(str, Enum):
RISK_ALERT = "risk_alert"
SYSTEM = "system"
MESSAGE = "message"
class NotificationStatus(str, Enum):
UNREAD = "unread"
READ = "read"
ARCHIVED = "archived"
async def create_alert(patient_id: str, risk_data: dict):
try:
alert_doc = {
"patient_id": patient_id,
"type": "suicide_risk",
"level": risk_data["level"],
"score": risk_data["score"],
"factors": risk_data["factors"],
"timestamp": datetime.utcnow(),
"acknowledged": False,
"notification": {
"type": "risk_alert",
"status": "unread",
"title": f"Suicide Risk: {risk_data['level'].capitalize()}",
"message": f"Patient {patient_id} shows {risk_data['level']} risk factors",
"icon": "⚠️",
"action_url": f"/patient/{patient_id}/risk-assessment",
"priority": "high" if risk_data["level"] in ["high", "severe"] else "medium"
}
}
await alerts_collection.insert_one(alert_doc)
# Simplified WebSocket notification - remove Hugging Face specific code
await broadcast_notification(alert_doc["notification"])
logger.warning(f"⚠️ Created suicide risk alert for patient {patient_id}")
return alert_doc
except Exception as e:
logger.error(f"Failed to create alert: {str(e)}")
raise
async def analyze_patient_report(
patient_id: Optional[str],
report_content: str,
file_type: str,
file_content: bytes
):
"""Analyze a patient report and create alerts for risks"""
identifier = patient_id if patient_id else compute_file_content_hash(file_content)
report_data = {"identifier": identifier, "content": report_content, "file_type": file_type}
report_hash = compute_patient_data_hash(report_data)
logger.info(f"🧾 Analyzing report for identifier: {identifier}")
# Check for existing analysis
existing_analysis = await analysis_collection.find_one(
{"identifier": identifier, "report_hash": report_hash}
)
if existing_analysis:
logger.info(f"✅ No changes in report data for {identifier}, skipping analysis")
return existing_analysis
try:
# Generate analysis
prompt = (
"You are a clinical decision support AI. Analyze the following patient report:\n"
"1. Summarize the patient's medical history.\n"
"2. Identify risks or red flags (including mental health and suicide risk).\n"
"3. Highlight missed diagnoses or treatments.\n"
"4. Suggest next clinical steps.\n"
f"\nPatient Report ({file_type}):\n{'-'*40}\n{report_content[:10000]}"
)
raw_response = agent.chat(
message=prompt,
history=[],
temperature=0.7,
max_new_tokens=1024
)
structured_response = structure_medical_response(raw_response)
# Detect suicide risk
risk_level, risk_score, risk_factors = detect_suicide_risk(raw_response)
suicide_risk = {
"level": risk_level.value,
"score": risk_score,
"factors": risk_factors
}
# Store analysis
analysis_doc = {
"identifier": identifier,
"patient_id": patient_id,
"timestamp": datetime.utcnow(),
"summary": structured_response,
"suicide_risk": suicide_risk,
"raw": raw_response,
"report_hash": report_hash,
"file_type": file_type
}
await analysis_collection.update_one(
{"identifier": identifier, "report_hash": report_hash},
{"$set": analysis_doc},
upsert=True
)
# Create alert if risk detected
if patient_id and risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]:
await create_alert(patient_id, suicide_risk)
logger.info(f"✅ Stored analysis for identifier {identifier}")
return analysis_doc
except Exception as e:
logger.error(f"Error analyzing report for {identifier}: {str(e)}")
error_alert = {
"identifier": identifier,
"type": "system_error",
"level": "high",
"message": f"Report analysis failed: {str(e)}",
"timestamp": datetime.utcnow(),
"acknowledged": False,
"notification": {
"type": NotificationType.SYSTEM,
"status": NotificationStatus.UNREAD,
"title": "Report Analysis Error",
"message": f"Failed to analyze report for {'patient ' + patient_id if patient_id else 'unknown identifier'}",
"icon": "❌",
"action_url": "/system/errors",
"priority": "high"
}
}
await alerts_collection.insert_one(error_alert)
raise
async def analyze_patient(patient: dict):
"""Analyze complete patient record and create alerts for risks"""
try:
serialized = serialize_patient(patient)
patient_id = serialized.get("fhir_id")
patient_hash = compute_patient_data_hash(serialized)
logger.info(f"🧾 Analyzing patient: {patient_id}")
# Check for existing analysis
existing_analysis = await analysis_collection.find_one({"patient_id": patient_id})
if existing_analysis and existing_analysis.get("data_hash") == patient_hash:
logger.info(f"✅ No changes in patient data for {patient_id}, skipping analysis")
return
# Generate analysis
doc = json.dumps(serialized, indent=2)
message = (
"You are a clinical decision support AI.\n\n"
"Given the patient document below:\n"
"1. Summarize the patient's medical history.\n"
"2. Identify risks or red flags (including mental health and suicide risk).\n"
"3. Highlight missed diagnoses or treatments.\n"
"4. Suggest next clinical steps.\n"
f"\nPatient Document:\n{'-'*40}\n{doc[:10000]}"
)
raw = agent.chat(message=message, history=[], temperature=0.7, max_new_tokens=1024)
structured = structure_medical_response(raw)
# Detect suicide risk
risk_level, risk_score, risk_factors = detect_suicide_risk(raw)
suicide_risk = {
"level": risk_level.value,
"score": risk_score,
"factors": risk_factors
}
# Store analysis
analysis_doc = {
"identifier": patient_id,
"patient_id": patient_id,
"timestamp": datetime.utcnow(),
"summary": structured,
"suicide_risk": suicide_risk,
"raw": raw,
"data_hash": patient_hash
}
await analysis_collection.update_one(
{"identifier": patient_id},
{"$set": analysis_doc},
upsert=True
)
# Create alert if risk detected
if risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]:
await create_alert(patient_id, suicide_risk)
logger.info(f"✅ Stored analysis for patient {patient_id}")
except Exception as e:
logger.error(f"Error analyzing patient: {str(e)}")
error_alert = {
"patient_id": patient_id if 'patient_id' in locals() else "unknown",
"type": "system_error",
"level": "high",
"message": f"Patient analysis failed: {str(e)}",
"timestamp": datetime.utcnow(),
"acknowledged": False,
"notification": {
"type": NotificationType.SYSTEM,
"status": NotificationStatus.UNREAD,
"title": "Analysis Error",
"message": f"Failed to analyze patient {patient_id if 'patient_id' in locals() else 'unknown'}",
"icon": "❌",
"action_url": "/system/errors",
"priority": "high"
}
}
await alerts_collection.insert_one(error_alert)
raise
def detect_suicide_risk(text: str) -> Tuple[RiskLevel, float, List[str]]:
"""Detect suicide risk level from text analysis"""
suicide_keywords = [
'suicide', 'suicidal', 'kill myself', 'end my life',
'want to die', 'self-harm', 'self harm', 'hopeless',
'no reason to live', 'plan to die'
]
explicit_mentions = [kw for kw in suicide_keywords if kw in text.lower()]
if not explicit_mentions:
return RiskLevel.NONE, 0.0, []
try:
# Get AI assessment
assessment_prompt = (
"Assess the suicide risk level based on this text. "
"Consider frequency, specificity, and severity of statements. "
"Respond with JSON format: {\"risk_level\": \"low/moderate/high/severe\", "
"\"risk_score\": 0-1, \"factors\": [\"list of risk factors\"]}\n\n"
f"Text to assess:\n{text}"
)
response = agent.chat(
message=assessment_prompt,
history=[],
temperature=0.2,
max_new_tokens=256
)
# Parse response
json_match = re.search(r'\{.*\}', response, re.DOTALL)
if json_match:
assessment = json.loads(json_match.group())
return (
RiskLevel(assessment.get("risk_level", "none").lower()),
float(assessment.get("risk_score", 0)),
assessment.get("factors", [])
)
except Exception as e:
logger.error(f"Error in suicide risk assessment: {e}")
# Fallback heuristic if AI assessment fails
risk_score = min(0.1 * len(explicit_mentions), 0.9)
if risk_score > 0.7:
return RiskLevel.HIGH, risk_score, explicit_mentions
elif risk_score > 0.4:
return RiskLevel.MODERATE, risk_score, explicit_mentions
return RiskLevel.LOW, risk_score, explicit_mentions |