File size: 10,657 Bytes
57bcbf7
848a6a1
57bcbf7
 
848a6a1
 
 
 
 
 
 
5b26f80
 
57bcbf7
 
9d6bcd0
848a6a1
 
 
 
 
 
 
 
 
 
57bcbf7
848a6a1
cb8e838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
848a6a1
0e8f161
cb8e838
 
 
848a6a1
 
 
0e8f161
848a6a1
 
 
 
 
 
 
 
57bcbf7
 
 
 
 
848a6a1
 
 
 
57bcbf7
 
 
 
848a6a1
 
 
 
 
 
 
 
 
 
57bcbf7
848a6a1
 
 
 
 
 
 
57bcbf7
848a6a1
 
 
 
 
 
 
57bcbf7
848a6a1
 
 
 
 
 
 
 
 
 
 
57bcbf7
848a6a1
 
 
 
 
57bcbf7
848a6a1
 
 
 
 
 
57bcbf7
848a6a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57bcbf7
 
848a6a1
5b26f80
57bcbf7
 
 
 
 
848a6a1
57bcbf7
 
 
 
5b26f80
848a6a1
57bcbf7
 
 
 
 
 
 
 
 
 
0344bc2
57bcbf7
 
 
848a6a1
57bcbf7
 
 
 
 
 
 
848a6a1
57bcbf7
 
5b26f80
 
57bcbf7
 
 
 
5b26f80
57bcbf7
 
 
 
 
 
 
848a6a1
57bcbf7
 
 
 
5b26f80
 
848a6a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57bcbf7
 
848a6a1
57bcbf7
 
 
 
 
 
 
 
 
 
848a6a1
 
 
 
 
 
 
 
 
57bcbf7
 
 
 
 
 
848a6a1
 
57bcbf7
 
 
 
 
 
 
 
 
 
 
848a6a1
57bcbf7
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
from typing import Optional, Tuple, List
from enum import Enum
from config import agent, patients_collection, analysis_collection, alerts_collection, logger
from models import RiskLevel
from utils import (
    structure_medical_response, 
    compute_file_content_hash, 
    compute_patient_data_hash, 
    serialize_patient,
    broadcast_notification
)
from datetime import datetime
import asyncio
import json
import re
import os 
class NotificationType(str, Enum):
    RISK_ALERT = "risk_alert"
    SYSTEM = "system"
    MESSAGE = "message"

class NotificationStatus(str, Enum):
    UNREAD = "unread"
    READ = "read"
    ARCHIVED = "archived"

async def create_alert(patient_id: str, risk_data: dict):
    try:
        alert_doc = {
            "patient_id": patient_id,
            "type": "suicide_risk",
            "level": risk_data["level"],
            "score": risk_data["score"],
            "factors": risk_data["factors"],
            "timestamp": datetime.utcnow(),
            "acknowledged": False,
            "notification": {
                "type": "risk_alert",
                "status": "unread",
                "title": f"Suicide Risk: {risk_data['level'].capitalize()}",
                "message": f"Patient {patient_id} shows {risk_data['level']} risk factors",
                "icon": "⚠️",
                "action_url": f"/patient/{patient_id}/risk-assessment",
                "priority": "high" if risk_data["level"] in ["high", "severe"] else "medium"
            }
        }
        
        await alerts_collection.insert_one(alert_doc)
        
        # Simplified WebSocket notification - remove Hugging Face specific code
        await broadcast_notification(alert_doc["notification"])
        
        logger.warning(f"⚠️ Created suicide risk alert for patient {patient_id}")
        return alert_doc
    except Exception as e:
        logger.error(f"Failed to create alert: {str(e)}")
        raise
async def analyze_patient_report(
    patient_id: Optional[str], 
    report_content: str, 
    file_type: str, 
    file_content: bytes
):
    """Analyze a patient report and create alerts for risks"""
    identifier = patient_id if patient_id else compute_file_content_hash(file_content)
    report_data = {"identifier": identifier, "content": report_content, "file_type": file_type}
    report_hash = compute_patient_data_hash(report_data)
    logger.info(f"🧾 Analyzing report for identifier: {identifier}")

    # Check for existing analysis
    existing_analysis = await analysis_collection.find_one(
        {"identifier": identifier, "report_hash": report_hash}
    )
    if existing_analysis:
        logger.info(f"✅ No changes in report data for {identifier}, skipping analysis")
        return existing_analysis

    try:
        # Generate analysis
        prompt = (
            "You are a clinical decision support AI. Analyze the following patient report:\n"
            "1. Summarize the patient's medical history.\n"
            "2. Identify risks or red flags (including mental health and suicide risk).\n"
            "3. Highlight missed diagnoses or treatments.\n"
            "4. Suggest next clinical steps.\n"
            f"\nPatient Report ({file_type}):\n{'-'*40}\n{report_content[:10000]}"
        )

        raw_response = agent.chat(
            message=prompt,
            history=[],
            temperature=0.7,
            max_new_tokens=1024
        )
        structured_response = structure_medical_response(raw_response)

        # Detect suicide risk
        risk_level, risk_score, risk_factors = detect_suicide_risk(raw_response)
        suicide_risk = {
            "level": risk_level.value,
            "score": risk_score,
            "factors": risk_factors
        }

        # Store analysis
        analysis_doc = {
            "identifier": identifier,
            "patient_id": patient_id,
            "timestamp": datetime.utcnow(),
            "summary": structured_response,
            "suicide_risk": suicide_risk,
            "raw": raw_response,
            "report_hash": report_hash,
            "file_type": file_type
        }

        await analysis_collection.update_one(
            {"identifier": identifier, "report_hash": report_hash},
            {"$set": analysis_doc},
            upsert=True
        )

        # Create alert if risk detected
        if patient_id and risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]:
            await create_alert(patient_id, suicide_risk)

        logger.info(f"✅ Stored analysis for identifier {identifier}")
        return analysis_doc

    except Exception as e:
        logger.error(f"Error analyzing report for {identifier}: {str(e)}")
        error_alert = {
            "identifier": identifier,
            "type": "system_error",
            "level": "high",
            "message": f"Report analysis failed: {str(e)}",
            "timestamp": datetime.utcnow(),
            "acknowledged": False,
            "notification": {
                "type": NotificationType.SYSTEM,
                "status": NotificationStatus.UNREAD,
                "title": "Report Analysis Error",
                "message": f"Failed to analyze report for {'patient ' + patient_id if patient_id else 'unknown identifier'}",
                "icon": "❌",
                "action_url": "/system/errors",
                "priority": "high"
            }
        }
        await alerts_collection.insert_one(error_alert)
        raise

async def analyze_patient(patient: dict):
    """Analyze complete patient record and create alerts for risks"""
    try:
        serialized = serialize_patient(patient)
        patient_id = serialized.get("fhir_id")
        patient_hash = compute_patient_data_hash(serialized)
        logger.info(f"🧾 Analyzing patient: {patient_id}")

        # Check for existing analysis
        existing_analysis = await analysis_collection.find_one({"patient_id": patient_id})
        if existing_analysis and existing_analysis.get("data_hash") == patient_hash:
            logger.info(f"✅ No changes in patient data for {patient_id}, skipping analysis")
            return

        # Generate analysis
        doc = json.dumps(serialized, indent=2)
        message = (
            "You are a clinical decision support AI.\n\n"
            "Given the patient document below:\n"
            "1. Summarize the patient's medical history.\n"
            "2. Identify risks or red flags (including mental health and suicide risk).\n"
            "3. Highlight missed diagnoses or treatments.\n"
            "4. Suggest next clinical steps.\n"
            f"\nPatient Document:\n{'-'*40}\n{doc[:10000]}"
        )

        raw = agent.chat(message=message, history=[], temperature=0.7, max_new_tokens=1024)
        structured = structure_medical_response(raw)
        
        # Detect suicide risk
        risk_level, risk_score, risk_factors = detect_suicide_risk(raw)
        suicide_risk = {
            "level": risk_level.value,
            "score": risk_score,
            "factors": risk_factors
        }
        
        # Store analysis
        analysis_doc = {
            "identifier": patient_id,
            "patient_id": patient_id,
            "timestamp": datetime.utcnow(),
            "summary": structured,
            "suicide_risk": suicide_risk,
            "raw": raw,
            "data_hash": patient_hash
        }
        
        await analysis_collection.update_one(
            {"identifier": patient_id},
            {"$set": analysis_doc},
            upsert=True
        )
        
        # Create alert if risk detected
        if risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]:
            await create_alert(patient_id, suicide_risk)
            
        logger.info(f"✅ Stored analysis for patient {patient_id}")

    except Exception as e:
        logger.error(f"Error analyzing patient: {str(e)}")
        error_alert = {
            "patient_id": patient_id if 'patient_id' in locals() else "unknown",
            "type": "system_error",
            "level": "high",
            "message": f"Patient analysis failed: {str(e)}",
            "timestamp": datetime.utcnow(),
            "acknowledged": False,
            "notification": {
                "type": NotificationType.SYSTEM,
                "status": NotificationStatus.UNREAD,
                "title": "Analysis Error",
                "message": f"Failed to analyze patient {patient_id if 'patient_id' in locals() else 'unknown'}",
                "icon": "❌",
                "action_url": "/system/errors",
                "priority": "high"
            }
        }
        await alerts_collection.insert_one(error_alert)
        raise

def detect_suicide_risk(text: str) -> Tuple[RiskLevel, float, List[str]]:
    """Detect suicide risk level from text analysis"""
    suicide_keywords = [
        'suicide', 'suicidal', 'kill myself', 'end my life', 
        'want to die', 'self-harm', 'self harm', 'hopeless',
        'no reason to live', 'plan to die'
    ]
    explicit_mentions = [kw for kw in suicide_keywords if kw in text.lower()]
    if not explicit_mentions:
        return RiskLevel.NONE, 0.0, []
    
    try:
        # Get AI assessment
        assessment_prompt = (
            "Assess the suicide risk level based on this text. "
            "Consider frequency, specificity, and severity of statements. "
            "Respond with JSON format: {\"risk_level\": \"low/moderate/high/severe\", "
            "\"risk_score\": 0-1, \"factors\": [\"list of risk factors\"]}\n\n"
            f"Text to assess:\n{text}"
        )
        
        response = agent.chat(
            message=assessment_prompt,
            history=[],
            temperature=0.2,
            max_new_tokens=256
        )
        
        # Parse response
        json_match = re.search(r'\{.*\}', response, re.DOTALL)
        if json_match:
            assessment = json.loads(json_match.group())
            return (
                RiskLevel(assessment.get("risk_level", "none").lower()),
                float(assessment.get("risk_score", 0)),
                assessment.get("factors", [])
            )
    except Exception as e:
        logger.error(f"Error in suicide risk assessment: {e}")
    
    # Fallback heuristic if AI assessment fails
    risk_score = min(0.1 * len(explicit_mentions), 0.9)
    if risk_score > 0.7:
        return RiskLevel.HIGH, risk_score, explicit_mentions
    elif risk_score > 0.4:
        return RiskLevel.MODERATE, risk_score, explicit_mentions
    return RiskLevel.LOW, risk_score, explicit_mentions