| from typing import Optional, Tuple, List | |
| from config import agent, patients_collection, analysis_collection, alerts_collection, logger | |
| from models import RiskLevel | |
| from utils import structure_medical_response, compute_file_content_hash, compute_patient_data_hash, serialize_patient | |
| from datetime import datetime | |
| import asyncio | |
| import json | |
| import re | |
| async def create_alert(patient_id: str, risk_data: dict): | |
| alert_doc = { | |
| "patient_id": patient_id, | |
| "type": "suicide_risk", | |
| "level": risk_data["level"], | |
| "score": risk_data["score"], | |
| "factors": risk_data["factors"], | |
| "timestamp": datetime.utcnow(), | |
| "acknowledged": False | |
| } | |
| await alerts_collection.insert_one(alert_doc) | |
| logger.warning(f"⚠️ Created suicide risk alert for patient {patient_id}") | |
| async def analyze_patient_report(patient_id: Optional[str], report_content: str, file_type: str, file_content: bytes): | |
| identifier = patient_id if patient_id else compute_file_content_hash(file_content) | |
| report_data = {"identifier": identifier, "content": report_content, "file_type": file_type} | |
| report_hash = compute_patient_data_hash(report_data) | |
| logger.info(f"🧾 Analyzing report for identifier: {identifier}") | |
| existing_analysis = await analysis_collection.find_one({"identifier": identifier, "report_hash": report_hash}) | |
| if existing_analysis: | |
| logger.info(f"✅ No changes in report data for {identifier}, skipping analysis") | |
| return existing_analysis | |
| prompt = ( | |
| "You are a clinical decision support AI. Analyze the following patient report:\n" | |
| "1. Summarize the patient's medical history.\n" | |
| "2. Identify risks or red flags (including mental health and suicide risk).\n" | |
| "3. Highlight missed diagnoses or treatments.\n" | |
| "4. Suggest next clinical steps.\n" | |
| f"\nPatient Report ({file_type}):\n{'-'*40}\n{report_content[:10000]}" | |
| ) | |
| raw_response = agent.chat( | |
| message=prompt, | |
| history=[], | |
| temperature=0.7, | |
| max_new_tokens=1024 | |
| ) | |
| structured_response = structure_medical_response(raw_response) | |
| risk_level, risk_score, risk_factors = detect_suicide_risk(raw_response) | |
| suicide_risk = { | |
| "level": risk_level.value, | |
| "score": risk_score, | |
| "factors": risk_factors | |
| } | |
| analysis_doc = { | |
| "identifier": identifier, | |
| "patient_id": patient_id, | |
| "timestamp": datetime.utcnow(), | |
| "summary": structured_response, | |
| "suicide_risk": suicide_risk, | |
| "raw": raw_response, | |
| "report_hash": report_hash, | |
| "file_type": file_type | |
| } | |
| await analysis_collection.update_one( | |
| {"identifier": identifier, "report_hash": report_hash}, | |
| {"$set": analysis_doc}, | |
| upsert=True | |
| ) | |
| if patient_id and risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]: | |
| await create_alert(patient_id, suicide_risk) | |
| logger.info(f"✅ Stored analysis for identifier {identifier}") | |
| return analysis_doc | |
| async def analyze_patient(patient: dict): | |
| try: | |
| serialized = serialize_patient(patient) | |
| patient_id = serialized.get("fhir_id") | |
| patient_hash = compute_patient_data_hash(serialized) | |
| logger.info(f"🧾 Analyzing patient: {patient_id}") | |
| existing_analysis = await analysis_collection.find_one({"patient_id": patient_id}) | |
| if existing_analysis and existing_analysis.get("data_hash") == patient_hash: | |
| logger.info(f"✅ No changes in patient data for {patient_id}, skipping analysis") | |
| return | |
| doc = json.dumps(serialized, indent=2) | |
| message = ( | |
| "You are a clinical decision support AI.\n\n" | |
| "Given the patient document below:\n" | |
| "1. Summarize the patient's medical history.\n" | |
| "2. Identify risks or red flags (including mental health and suicide risk).\n" | |
| "3. Highlight missed diagnoses or treatments.\n" | |
| "4. Suggest next clinical steps.\n" | |
| f"\nPatient Document:\n{'-'*40}\n{doc[:10000]}" | |
| ) | |
| raw = agent.chat(message=message, history=[], temperature=0.7, max_new_tokens=1024) | |
| structured = structure_medical_response(raw) | |
| risk_level, risk_score, risk_factors = detect_suicide_risk(raw) | |
| suicide_risk = { | |
| "level": risk_level.value, | |
| "score": risk_score, | |
| "factors": risk_factors | |
| } | |
| analysis_doc = { | |
| "identifier": patient_id, | |
| "patient_id": patient_id, | |
| "timestamp": datetime.utcnow(), | |
| "summary": structured, | |
| "suicide_risk": suicide_risk, | |
| "raw": raw, | |
| "data_hash": patient_hash | |
| } | |
| await analysis_collection.update_one( | |
| {"identifier": patient_id}, | |
| {"$set": analysis_doc}, | |
| upsert=True | |
| ) | |
| if risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]: | |
| await create_alert(patient_id, suicide_risk) | |
| logger.info(f"✅ Stored analysis for patient {patient_id}") | |
| except Exception as e: | |
| logger.error(f"Error analyzing patient: {e}") | |
| def detect_suicide_risk(text: str) -> Tuple[RiskLevel, float, List[str]]: | |
| suicide_keywords = [ | |
| 'suicide', 'suicidal', 'kill myself', 'end my life', | |
| 'want to die', 'self-harm', 'self harm', 'hopeless', | |
| 'no reason to live', 'plan to die' | |
| ] | |
| explicit_mentions = [kw for kw in suicide_keywords if kw in text.lower()] | |
| if not explicit_mentions: | |
| return RiskLevel.NONE, 0.0, [] | |
| assessment_prompt = ( | |
| "Assess the suicide risk level based on this text. " | |
| "Consider frequency, specificity, and severity of statements. " | |
| "Respond with JSON format: {\"risk_level\": \"low/moderate/high/severe\", " | |
| "\"risk_score\": 0-1, \"factors\": [\"list of risk factors\"]}\n\n" | |
| f"Text to assess:\n{text}" | |
| ) | |
| try: | |
| response = agent.chat( | |
| message=assessment_prompt, | |
| history=[], | |
| temperature=0.2, | |
| max_new_tokens=256 | |
| ) | |
| json_match = re.search(r'\{.*\}', response, re.DOTALL) | |
| if json_match: | |
| assessment = json.loads(json_match.group()) | |
| return ( | |
| RiskLevel(assessment.get("risk_level", "none").lower()), | |
| float(assessment.get("risk_score", 0)), | |
| assessment.get("factors", []) | |
| ) | |
| except Exception as e: | |
| logger.error(f"Error in suicide risk assessment: {e}") | |
| risk_score = min(0.1 * len(explicit_mentions), 0.9) | |
| if risk_score > 0.7: | |
| return RiskLevel.HIGH, risk_score, explicit_mentions | |
| elif risk_score > 0.4: | |
| return RiskLevel.MODERATE, risk_score, explicit_mentions | |
| return RiskLevel.LOW, risk_score, explicit_mentions |