File size: 6,976 Bytes
7bdd8f4
5b26f80
 
7bdd8f4
5b26f80
 
7bdd8f4
 
5b26f80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from typing import Optional, Tuple, List
from config import agent, patients_collection, analysis_collection, alerts_collection, logger
from models import RiskLevel
from utils import structure_medical_response, compute_file_content_hash, compute_patient_data_hash, serialize_patient
from datetime import datetime
import asyncio
import json
import re

async def create_alert(patient_id: str, risk_data: dict):
    alert_doc = {
        "patient_id": patient_id,
        "type": "suicide_risk",
        "level": risk_data["level"],
        "score": risk_data["score"],
        "factors": risk_data["factors"],
        "timestamp": datetime.utcnow(),
        "acknowledged": False
    }
    await alerts_collection.insert_one(alert_doc)
    logger.warning(f"⚠️ Created suicide risk alert for patient {patient_id}")

async def analyze_patient_report(patient_id: Optional[str], report_content: str, file_type: str, file_content: bytes):
    identifier = patient_id if patient_id else compute_file_content_hash(file_content)
    report_data = {"identifier": identifier, "content": report_content, "file_type": file_type}
    report_hash = compute_patient_data_hash(report_data)
    logger.info(f"🧾 Analyzing report for identifier: {identifier}")

    existing_analysis = await analysis_collection.find_one({"identifier": identifier, "report_hash": report_hash})
    if existing_analysis:
        logger.info(f"✅ No changes in report data for {identifier}, skipping analysis")
        return existing_analysis

    prompt = (
        "You are a clinical decision support AI. Analyze the following patient report:\n"
        "1. Summarize the patient's medical history.\n"
        "2. Identify risks or red flags (including mental health and suicide risk).\n"
        "3. Highlight missed diagnoses or treatments.\n"
        "4. Suggest next clinical steps.\n"
        f"\nPatient Report ({file_type}):\n{'-'*40}\n{report_content[:10000]}"
    )

    raw_response = agent.chat(
        message=prompt,
        history=[],
        temperature=0.7,
        max_new_tokens=1024
    )
    structured_response = structure_medical_response(raw_response)

    risk_level, risk_score, risk_factors = detect_suicide_risk(raw_response)
    suicide_risk = {
        "level": risk_level.value,
        "score": risk_score,
        "factors": risk_factors
    }

    analysis_doc = {
        "identifier": identifier,
        "patient_id": patient_id,
        "timestamp": datetime.utcnow(),
        "summary": structured_response,
        "suicide_risk": suicide_risk,
        "raw": raw_response,
        "report_hash": report_hash,
        "file_type": file_type
    }

    await analysis_collection.update_one(
        {"identifier": identifier, "report_hash": report_hash},
        {"$set": analysis_doc},
        upsert=True
    )

    if patient_id and risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]:
        await create_alert(patient_id, suicide_risk)

    logger.info(f"✅ Stored analysis for identifier {identifier}")
    return analysis_doc

async def analyze_patient(patient: dict):
    try:
        serialized = serialize_patient(patient)
        patient_id = serialized.get("fhir_id")
        patient_hash = compute_patient_data_hash(serialized)
        logger.info(f"🧾 Analyzing patient: {patient_id}")

        existing_analysis = await analysis_collection.find_one({"patient_id": patient_id})
        if existing_analysis and existing_analysis.get("data_hash") == patient_hash:
            logger.info(f"✅ No changes in patient data for {patient_id}, skipping analysis")
            return

        doc = json.dumps(serialized, indent=2)
        message = (
            "You are a clinical decision support AI.\n\n"
            "Given the patient document below:\n"
            "1. Summarize the patient's medical history.\n"
            "2. Identify risks or red flags (including mental health and suicide risk).\n"
            "3. Highlight missed diagnoses or treatments.\n"
            "4. Suggest next clinical steps.\n"
            f"\nPatient Document:\n{'-'*40}\n{doc[:10000]}"
        )

        raw = agent.chat(message=message, history=[], temperature=0.7, max_new_tokens=1024)
        structured = structure_medical_response(raw)
        
        risk_level, risk_score, risk_factors = detect_suicide_risk(raw)
        suicide_risk = {
            "level": risk_level.value,
            "score": risk_score,
            "factors": risk_factors
        }
        
        analysis_doc = {
            "identifier": patient_id,
            "patient_id": patient_id,
            "timestamp": datetime.utcnow(),
            "summary": structured,
            "suicide_risk": suicide_risk,
            "raw": raw,
            "data_hash": patient_hash
        }
        
        await analysis_collection.update_one(
            {"identifier": patient_id},
            {"$set": analysis_doc},
            upsert=True
        )
        
        if risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]:
            await create_alert(patient_id, suicide_risk)
            
        logger.info(f"✅ Stored analysis for patient {patient_id}")

    except Exception as e:
        logger.error(f"Error analyzing patient: {e}")

def detect_suicide_risk(text: str) -> Tuple[RiskLevel, float, List[str]]:
    suicide_keywords = [
        'suicide', 'suicidal', 'kill myself', 'end my life', 
        'want to die', 'self-harm', 'self harm', 'hopeless',
        'no reason to live', 'plan to die'
    ]
    explicit_mentions = [kw for kw in suicide_keywords if kw in text.lower()]
    if not explicit_mentions:
        return RiskLevel.NONE, 0.0, []
    
    assessment_prompt = (
        "Assess the suicide risk level based on this text. "
        "Consider frequency, specificity, and severity of statements. "
        "Respond with JSON format: {\"risk_level\": \"low/moderate/high/severe\", "
        "\"risk_score\": 0-1, \"factors\": [\"list of risk factors\"]}\n\n"
        f"Text to assess:\n{text}"
    )
    
    try:
        response = agent.chat(
            message=assessment_prompt,
            history=[],
            temperature=0.2,
            max_new_tokens=256
        )
        json_match = re.search(r'\{.*\}', response, re.DOTALL)
        if json_match:
            assessment = json.loads(json_match.group())
            return (
                RiskLevel(assessment.get("risk_level", "none").lower()),
                float(assessment.get("risk_score", 0)),
                assessment.get("factors", [])
            )
    except Exception as e:
        logger.error(f"Error in suicide risk assessment: {e}")
    
    risk_score = min(0.1 * len(explicit_mentions), 0.9)
    if risk_score > 0.7:
        return RiskLevel.HIGH, risk_score, explicit_mentions
    elif risk_score > 0.4:
        return RiskLevel.MODERATE, risk_score, explicit_mentions
    return RiskLevel.LOW, risk_score, explicit_mentions