TxAgent-Api / app.py
Ali2206's picture
Update app.py
ab172ce verified
raw
history blame
6.15 kB
import os
import sys
import json
import logging
import re
from datetime import datetime
from typing import List, Dict, Optional
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse, StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from pymongo import MongoClient
from bson import ObjectId
import asyncio
# Adjust sys path
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src")))
# TxAgent
from txagent.txagent import TxAgent
# MongoDB
from db.mongo import get_mongo_client
# Setup logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("TxAgentAPI")
# FastAPI app
app = FastAPI(title="TxAgent API", version="2.1.0")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], allow_credentials=True,
allow_methods=["*"], allow_headers=["*"]
)
# Models
class ChatRequest(BaseModel):
message: str
temperature: float = 0.7
max_new_tokens: int = 512
history: Optional[List[Dict]] = None
format: Optional[str] = "clean"
# Globals
agent = None
mongo_client = None
patients_collection = None
analysis_collection = None
# Helpers
def clean_text_response(text: str) -> str:
text = re.sub(r'\n\s*\n', '\n\n', text)
text = re.sub(r'[ ]+', ' ', text)
return text.replace("**", "").replace("__", "").strip()
def extract_section(text: str, heading: str) -> str:
try:
pattern = rf"{heading}:\n(.*?)(?=\n\w|\Z)"
match = re.search(pattern, text, re.DOTALL)
return clean_text_response(match.group(1)) if match else ""
except Exception as e:
logger.error(f"Section extraction failed: {e}")
return ""
def structure_medical_response(text: str) -> Dict:
return {
"summary": extract_section(text, "Summary"),
"risks": extract_section(text, "Risks or Red Flags"),
"missed_issues": extract_section(text, "What the doctor might have missed"),
"recommendations": extract_section(text, "Suggested Clinical Actions")
}
def serialize_patient(patient: dict) -> dict:
patient_copy = patient.copy()
if "_id" in patient_copy:
patient_copy["_id"] = str(patient_copy["_id"])
return patient_copy
async def analyze_patient(patient: dict):
try:
doc = json.dumps(serialize_patient(patient), indent=2)
message = (
"You are a clinical decision support AI.\n\n"
"Given the patient document below:\n"
"1. Summarize their medical history.\n"
"2. Identify risks or red flags.\n"
"3. Highlight missed diagnoses or treatments.\n"
"4. Suggest next clinical steps.\n"
f"\nPatient Document:\n{'-'*40}\n{doc[:10000]}"
)
raw = agent.chat(message=message, history=[], temperature=0.7, max_new_tokens=1024)
structured = structure_medical_response(raw)
analysis_doc = {
"patient_id": patient.get("fhir_id"),
"timestamp": datetime.utcnow(),
"summary": structured,
"raw": raw
}
await analysis_collection.update_one(
{"patient_id": patient.get("fhir_id")},
{"$set": analysis_doc},
upsert=True
)
logger.info(f"✔️ Analysis stored for patient {patient.get('fhir_id')}")
except Exception as e:
logger.error(f"Error analyzing patient: {e}")
async def analyze_all_patients():
patients = await patients_collection.find({}).to_list(length=None)
for patient in patients:
await analyze_patient(patient)
await asyncio.sleep(0.1)
# Startup logic
@app.on_event("startup")
async def startup_event():
global agent, mongo_client, patients_collection, analysis_collection
# Init agent
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
enable_finish=True,
enable_rag=False,
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=42
)
agent.chat_prompt = (
"You are a clinical assistant AI. Analyze the patient's data and provide clear clinical recommendations."
)
agent.init_model()
logger.info("✅ TxAgent initialized")
# MongoDB
mongo_client = get_mongo_client()
db = mongo_client.get_default_database()
patients_collection = db.get_collection("patients")
analysis_collection = db.get_collection("patient_analysis_results")
logger.info("📡 Connected to MongoDB")
asyncio.create_task(analyze_all_patients())
# Endpoints
@app.get("/status")
async def status():
return {
"status": "running",
"version": "2.1.0",
"timestamp": datetime.utcnow().isoformat()
}
@app.post("/chat-stream")
async def chat_stream_endpoint(request: ChatRequest):
async def token_stream():
try:
conversation = [{"role": "system", "content": agent.chat_prompt}]
if request.history:
conversation.extend(request.history)
conversation.append({"role": "user", "content": request.message})
input_ids = agent.tokenizer.apply_chat_template(
conversation, add_generation_prompt=True, return_tensors="pt"
).to(agent.device)
output = agent.model.generate(
input_ids,
do_sample=True,
temperature=request.temperature,
max_new_tokens=request.max_new_tokens,
pad_token_id=agent.tokenizer.eos_token_id,
return_dict_in_generate=True
)
text = agent.tokenizer.decode(output["sequences"][0][input_ids.shape[1]:], skip_special_tokens=True)
for chunk in text.split():
yield chunk + " "
await asyncio.sleep(0.05)
except Exception as e:
logger.error(f"Streaming error: {e}")
yield f"⚠️ Error: {e}"
return StreamingResponse(token_stream(), media_type="text/plain")