|
import os |
|
import sys |
|
import json |
|
import logging |
|
import re |
|
from datetime import datetime |
|
from typing import List, Dict, Optional |
|
|
|
from fastapi import FastAPI, HTTPException |
|
from fastapi.responses import JSONResponse, StreamingResponse |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from pydantic import BaseModel |
|
from pymongo import MongoClient |
|
from bson import ObjectId |
|
import asyncio |
|
|
|
|
|
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src"))) |
|
|
|
|
|
from txagent.txagent import TxAgent |
|
|
|
|
|
from db.mongo import get_mongo_client |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") |
|
logger = logging.getLogger("TxAgentAPI") |
|
|
|
|
|
app = FastAPI(title="TxAgent API", version="2.1.0") |
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], allow_credentials=True, |
|
allow_methods=["*"], allow_headers=["*"] |
|
) |
|
|
|
|
|
class ChatRequest(BaseModel): |
|
message: str |
|
temperature: float = 0.7 |
|
max_new_tokens: int = 512 |
|
history: Optional[List[Dict]] = None |
|
format: Optional[str] = "clean" |
|
|
|
|
|
agent = None |
|
mongo_client = None |
|
patients_collection = None |
|
analysis_collection = None |
|
|
|
|
|
def clean_text_response(text: str) -> str: |
|
text = re.sub(r'\n\s*\n', '\n\n', text) |
|
text = re.sub(r'[ ]+', ' ', text) |
|
return text.replace("**", "").replace("__", "").strip() |
|
|
|
def extract_section(text: str, heading: str) -> str: |
|
try: |
|
pattern = rf"{heading}:\n(.*?)(?=\n\w|\Z)" |
|
match = re.search(pattern, text, re.DOTALL) |
|
return clean_text_response(match.group(1)) if match else "" |
|
except Exception as e: |
|
logger.error(f"Section extraction failed: {e}") |
|
return "" |
|
|
|
def structure_medical_response(text: str) -> Dict: |
|
return { |
|
"summary": extract_section(text, "Summary"), |
|
"risks": extract_section(text, "Risks or Red Flags"), |
|
"missed_issues": extract_section(text, "What the doctor might have missed"), |
|
"recommendations": extract_section(text, "Suggested Clinical Actions") |
|
} |
|
|
|
def serialize_patient(patient: dict) -> dict: |
|
patient_copy = patient.copy() |
|
if "_id" in patient_copy: |
|
patient_copy["_id"] = str(patient_copy["_id"]) |
|
return patient_copy |
|
|
|
async def analyze_patient(patient: dict): |
|
try: |
|
doc = json.dumps(serialize_patient(patient), indent=2) |
|
message = ( |
|
"You are a clinical decision support AI.\n\n" |
|
"Given the patient document below:\n" |
|
"1. Summarize their medical history.\n" |
|
"2. Identify risks or red flags.\n" |
|
"3. Highlight missed diagnoses or treatments.\n" |
|
"4. Suggest next clinical steps.\n" |
|
f"\nPatient Document:\n{'-'*40}\n{doc[:10000]}" |
|
) |
|
|
|
raw = agent.chat(message=message, history=[], temperature=0.7, max_new_tokens=1024) |
|
structured = structure_medical_response(raw) |
|
|
|
analysis_doc = { |
|
"patient_id": patient.get("fhir_id"), |
|
"timestamp": datetime.utcnow(), |
|
"summary": structured, |
|
"raw": raw |
|
} |
|
await analysis_collection.update_one( |
|
{"patient_id": patient.get("fhir_id")}, |
|
{"$set": analysis_doc}, |
|
upsert=True |
|
) |
|
logger.info(f"✔️ Analysis stored for patient {patient.get('fhir_id')}") |
|
except Exception as e: |
|
logger.error(f"Error analyzing patient: {e}") |
|
|
|
async def analyze_all_patients(): |
|
patients = await patients_collection.find({}).to_list(length=None) |
|
for patient in patients: |
|
await analyze_patient(patient) |
|
await asyncio.sleep(0.1) |
|
|
|
|
|
@app.on_event("startup") |
|
async def startup_event(): |
|
global agent, mongo_client, patients_collection, analysis_collection |
|
|
|
|
|
agent = TxAgent( |
|
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
enable_finish=True, |
|
enable_rag=False, |
|
force_finish=True, |
|
enable_checker=True, |
|
step_rag_num=4, |
|
seed=42 |
|
) |
|
agent.chat_prompt = ( |
|
"You are a clinical assistant AI. Analyze the patient's data and provide clear clinical recommendations." |
|
) |
|
agent.init_model() |
|
logger.info("✅ TxAgent initialized") |
|
|
|
|
|
mongo_client = get_mongo_client() |
|
db = mongo_client.get_default_database() |
|
patients_collection = db.get_collection("patients") |
|
analysis_collection = db.get_collection("patient_analysis_results") |
|
|
|
logger.info("📡 Connected to MongoDB") |
|
asyncio.create_task(analyze_all_patients()) |
|
|
|
|
|
@app.get("/status") |
|
async def status(): |
|
return { |
|
"status": "running", |
|
"version": "2.1.0", |
|
"timestamp": datetime.utcnow().isoformat() |
|
} |
|
|
|
@app.post("/chat-stream") |
|
async def chat_stream_endpoint(request: ChatRequest): |
|
async def token_stream(): |
|
try: |
|
conversation = [{"role": "system", "content": agent.chat_prompt}] |
|
if request.history: |
|
conversation.extend(request.history) |
|
conversation.append({"role": "user", "content": request.message}) |
|
|
|
input_ids = agent.tokenizer.apply_chat_template( |
|
conversation, add_generation_prompt=True, return_tensors="pt" |
|
).to(agent.device) |
|
|
|
output = agent.model.generate( |
|
input_ids, |
|
do_sample=True, |
|
temperature=request.temperature, |
|
max_new_tokens=request.max_new_tokens, |
|
pad_token_id=agent.tokenizer.eos_token_id, |
|
return_dict_in_generate=True |
|
) |
|
|
|
text = agent.tokenizer.decode(output["sequences"][0][input_ids.shape[1]:], skip_special_tokens=True) |
|
for chunk in text.split(): |
|
yield chunk + " " |
|
await asyncio.sleep(0.05) |
|
except Exception as e: |
|
logger.error(f"Streaming error: {e}") |
|
yield f"⚠️ Error: {e}" |
|
|
|
return StreamingResponse(token_stream(), media_type="text/plain") |
|
|