CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
fddf521 verified
raw
history blame
10.4 kB
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Optional
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import time
from functools import lru_cache
from threading import Thread
import re
# Environment setup
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
# Cache directories
base_dir = "/data"
os.makedirs(base_dir, exist_ok=True)
model_cache_dir = os.path.join(base_dir, "txagent_models")
tool_cache_dir = os.path.join(base_dir, "tool_cache")
file_cache_dir = os.path.join(base_dir, "cache")
os.makedirs(model_cache_dir, exist_ok=True)
os.makedirs(tool_cache_dir, exist_ok=True)
os.makedirs(file_cache_dir, exist_ok=True)
os.environ.update({
"TRANSFORMERS_CACHE": model_cache_dir,
"HF_HOME": model_cache_dir,
"TOKENIZERS_PARALLELISM": "false",
"CUDA_LAUNCH_BLOCKING": "1"
})
from txagent.txagent import TxAgent
# Medical keywords for priority detection
MEDICAL_KEYWORDS = {
'diagnosis', 'assessment', 'plan', 'results', 'medications',
'allergies', 'summary', 'impression', 'findings', 'recommendations'
}
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
"""Fast extraction of first pages and medically relevant sections"""
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
# Always process first 3 pages
for i, page in enumerate(pdf.pages[:3]):
text_chunks.append(f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}")
# Scan subsequent pages for medical keywords
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
page_text = page.extract_text() or ""
if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
return "\n\n".join(text_chunks)
except Exception as e:
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str) -> str:
"""Optimized file conversion with medical focus"""
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
return open(cache_path, "r", encoding="utf-8").read()
if file_type == "pdf":
# Fast initial processing
text = extract_priority_pages(file_path)
result = json.dumps({
"filename": os.path.basename(file_path),
"content": text,
"status": "initial"
})
# Start background full processing
Thread(target=full_pdf_processing, args=(file_path, h)).start()
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None,
dtype=str, skip_blank_lines=False, on_bad_lines="skip")
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
else:
return json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def full_pdf_processing(file_path: str, file_hash: str):
"""Background full PDF processing"""
try:
cache_path = os.path.join(file_cache_dir, f"{file_hash}_full.json")
if os.path.exists(cache_path):
return
with pdfplumber.open(file_path) as pdf:
full_text = "\n".join([f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}"
for i, page in enumerate(pdf.pages)])
result = json.dumps({
"filename": os.path.basename(file_path),
"content": full_text,
"status": "complete"
})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
except Exception as e:
print(f"Background processing failed: {str(e)}")
def init_agent():
"""Initialize TxAgent with medical analysis focus"""
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=8,
seed=100,
additional_default_tools=[],
)
agent.init_model()
return agent
def create_ui(agent: TxAgent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
gr.Markdown("<h3 style='text-align: center;'>Identify potential oversights in patient care</h3>")
chatbot = gr.Chatbot(label="Analysis", height=600)
file_upload = gr.File(
label="Upload Medical Records",
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
file_count="multiple"
)
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
conversation_state = gr.State([])
def analyze_potential_oversights(message: str, history: list, conversation: list, files: list):
start_time = time.time()
try:
history.append((message, "Analyzing records for potential oversights..."))
yield history
# Process files
extracted_data = ""
if files:
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower())
for f in files if hasattr(f, 'name')]
extracted_data = "\n".join([sanitize_utf8(f.result()) for f in as_completed(futures)])
# Medical oversight analysis prompt
analysis_prompt = """Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up
Medical Records:
{records}
Provide ONLY the potential oversights in this format:
### Potential Oversights:
1. [Missed diagnosis] - [Evidence from records]
2. [Medication issue] - [Supporting data]
3. [Assessment gap] - [Relevant findings]""".format(records=extracted_data[:15000]) # Limit input size
# Generate analysis
response = []
for chunk in agent.run_gradio_chat(
message=analysis_prompt,
history=[],
temperature=0.2, # More deterministic
max_new_tokens=1024,
max_token=4096,
call_agent=False,
conversation=conversation
):
if isinstance(chunk, str):
response.append(chunk)
elif isinstance(chunk, list):
response.extend([c.content for c in chunk if hasattr(c, 'content')])
if len(response) % 3 == 0: # Update every 3 chunks
history[-1] = (message, "".join(response).strip())
yield history
# Finalize output
final_output = "".join(response).strip()
if not final_output:
final_output = "No clear oversights identified. Recommend comprehensive review."
# Format as bullet points if not already
if not final_output.startswith(("1.", "-", "*", "#")):
final_output = "• " + final_output.replace("\n", "\n• ")
history[-1] = (message, f"### Potential Clinical Oversights:\n{final_output}")
print(f"Analysis completed in {time.time()-start_time:.2f}s")
yield history
except Exception as e:
history.append((message, f"❌ Analysis failed: {str(e)}"))
yield history
# UI event handlers
inputs = [msg_input, chatbot, conversation_state, file_upload]
send_btn.click(analyze_potential_oversights, inputs=inputs, outputs=chatbot)
msg_input.submit(analyze_potential_oversights, inputs=inputs, outputs=chatbot)
gr.Examples([
["What might have been missed in this patient's treatment?"],
["Are there any medication conflicts in these records?"],
["What abnormal results require follow-up?"]
], inputs=msg_input)
return demo
if __name__ == "__main__":
print("Initializing medical analysis agent...")
agent = init_agent()
print("Launching interface...")
demo = create_ui(agent)
demo.queue(concurrency_count=2).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
share=True
)