File size: 10,438 Bytes
1bb8be7
dae38a2
 
 
 
1bb8be7
e24be23
dae38a2
 
 
e24be23
 
1da2cfd
 
dae38a2
1da2cfd
e24be23
 
 
 
1da2cfd
e24be23
1da2cfd
e24be23
 
 
dae38a2
 
e24be23
 
 
1da2cfd
 
 
 
 
 
dae38a2
 
 
1da2cfd
 
 
 
 
 
dae38a2
 
 
e24be23
dae38a2
 
 
1da2cfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e24be23
dae38a2
1da2cfd
dae38a2
 
e24be23
1da2cfd
dae38a2
 
 
1da2cfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dae38a2
 
 
 
 
1da2cfd
 
 
dae38a2
 
 
e24be23
 
dae38a2
1da2cfd
dae38a2
1da2cfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e24be23
 
1da2cfd
e24be23
 
1da2cfd
e24be23
 
 
 
1da2cfd
 
e24be23
 
 
 
 
1da2cfd
fddf521
e24be23
 
 
 
dae38a2
 
1da2cfd
 
dae38a2
1da2cfd
dae38a2
1da2cfd
 
dae38a2
 
1da2cfd
 
dae38a2
 
1da2cfd
e24be23
dae38a2
1da2cfd
dae38a2
1da2cfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dae38a2
1da2cfd
 
e24be23
dae38a2
1da2cfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dae38a2
 
1da2cfd
 
dae38a2
 
1da2cfd
 
 
 
dae38a2
 
1da2cfd
 
 
 
1bb8be7
dae38a2
e24be23
 
1da2cfd
e24be23
1da2cfd
e24be23
 
1da2cfd
e24be23
 
 
 
8e316b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Optional
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import time
from functools import lru_cache
from threading import Thread
import re

# Environment setup
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

# Cache directories
base_dir = "/data"
os.makedirs(base_dir, exist_ok=True)
model_cache_dir = os.path.join(base_dir, "txagent_models")
tool_cache_dir = os.path.join(base_dir, "tool_cache")
file_cache_dir = os.path.join(base_dir, "cache")

os.makedirs(model_cache_dir, exist_ok=True)
os.makedirs(tool_cache_dir, exist_ok=True)
os.makedirs(file_cache_dir, exist_ok=True)

os.environ.update({
    "TRANSFORMERS_CACHE": model_cache_dir,
    "HF_HOME": model_cache_dir,
    "TOKENIZERS_PARALLELISM": "false",
    "CUDA_LAUNCH_BLOCKING": "1"
})

from txagent.txagent import TxAgent

# Medical keywords for priority detection
MEDICAL_KEYWORDS = {
    'diagnosis', 'assessment', 'plan', 'results', 'medications',
    'allergies', 'summary', 'impression', 'findings', 'recommendations'
}

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
    """Fast extraction of first pages and medically relevant sections"""
    try:
        text_chunks = []
        with pdfplumber.open(file_path) as pdf:
            # Always process first 3 pages
            for i, page in enumerate(pdf.pages[:3]):
                text_chunks.append(f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}")
            
            # Scan subsequent pages for medical keywords
            for i, page in enumerate(pdf.pages[3:max_pages], start=4):
                page_text = page.extract_text() or ""
                if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
                    text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
        
        return "\n\n".join(text_chunks)
    except Exception as e:
        return f"PDF processing error: {str(e)}"

def convert_file_to_json(file_path: str, file_type: str) -> str:
    """Optimized file conversion with medical focus"""
    try:
        h = file_hash(file_path)
        cache_path = os.path.join(file_cache_dir, f"{h}.json")
        
        if os.path.exists(cache_path):
            return open(cache_path, "r", encoding="utf-8").read()

        if file_type == "pdf":
            # Fast initial processing
            text = extract_priority_pages(file_path)
            result = json.dumps({
                "filename": os.path.basename(file_path),
                "content": text,
                "status": "initial"
            })
            
            # Start background full processing
            Thread(target=full_pdf_processing, args=(file_path, h)).start()
            
        elif file_type == "csv":
            df = pd.read_csv(file_path, encoding_errors="replace", header=None, 
                           dtype=str, skip_blank_lines=False, on_bad_lines="skip")
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
            
        elif file_type in ["xls", "xlsx"]:
            try:
                df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            except:
                df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
            
        else:
            return json.dumps({"error": f"Unsupported file type: {file_type}"})

        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        return result
        
    except Exception as e:
        return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})

def full_pdf_processing(file_path: str, file_hash: str):
    """Background full PDF processing"""
    try:
        cache_path = os.path.join(file_cache_dir, f"{file_hash}_full.json")
        if os.path.exists(cache_path):
            return

        with pdfplumber.open(file_path) as pdf:
            full_text = "\n".join([f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}" 
                                 for i, page in enumerate(pdf.pages)])
            
        result = json.dumps({
            "filename": os.path.basename(file_path),
            "content": full_text,
            "status": "complete"
        })
        
        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
    except Exception as e:
        print(f"Background processing failed: {str(e)}")

def init_agent():
    """Initialize TxAgent with medical analysis focus"""
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=8,
        seed=100,
        additional_default_tools=[],
        
    )
    agent.init_model()
    return agent

def create_ui(agent: TxAgent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        gr.Markdown("<h3 style='text-align: center;'>Identify potential oversights in patient care</h3>")

        chatbot = gr.Chatbot(label="Analysis", height=600)
        file_upload = gr.File(
            label="Upload Medical Records",
            file_types=[".pdf", ".csv", ".xls", ".xlsx"],
            file_count="multiple"
        )
        msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
        send_btn = gr.Button("Analyze", variant="primary")
        conversation_state = gr.State([])

        def analyze_potential_oversights(message: str, history: list, conversation: list, files: list):
            start_time = time.time()
            try:
                history.append((message, "Analyzing records for potential oversights..."))
                yield history
                
                # Process files
                extracted_data = ""
                if files:
                    with ThreadPoolExecutor(max_workers=4) as executor:
                        futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) 
                                 for f in files if hasattr(f, 'name')]
                        extracted_data = "\n".join([sanitize_utf8(f.result()) for f in as_completed(futures)])

                # Medical oversight analysis prompt
                analysis_prompt = """Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up

Medical Records:
{records}

Provide ONLY the potential oversights in this format:

### Potential Oversights:
1. [Missed diagnosis] - [Evidence from records]
2. [Medication issue] - [Supporting data]
3. [Assessment gap] - [Relevant findings]""".format(records=extracted_data[:15000])  # Limit input size

                # Generate analysis
                response = []
                for chunk in agent.run_gradio_chat(
                    message=analysis_prompt,
                    history=[],
                    temperature=0.2,  # More deterministic
                    max_new_tokens=1024,
                    max_token=4096,
                    call_agent=False,
                    conversation=conversation
                ):
                    if isinstance(chunk, str):
                        response.append(chunk)
                    elif isinstance(chunk, list):
                        response.extend([c.content for c in chunk if hasattr(c, 'content')])
                    
                    if len(response) % 3 == 0:  # Update every 3 chunks
                        history[-1] = (message, "".join(response).strip())
                        yield history

                # Finalize output
                final_output = "".join(response).strip()
                if not final_output:
                    final_output = "No clear oversights identified. Recommend comprehensive review."

                # Format as bullet points if not already
                if not final_output.startswith(("1.", "-", "*", "#")):
                    final_output = "• " + final_output.replace("\n", "\n• ")

                history[-1] = (message, f"### Potential Clinical Oversights:\n{final_output}")
                print(f"Analysis completed in {time.time()-start_time:.2f}s")
                yield history

            except Exception as e:
                history.append((message, f"❌ Analysis failed: {str(e)}"))
                yield history

        # UI event handlers
        inputs = [msg_input, chatbot, conversation_state, file_upload]
        send_btn.click(analyze_potential_oversights, inputs=inputs, outputs=chatbot)
        msg_input.submit(analyze_potential_oversights, inputs=inputs, outputs=chatbot)

        gr.Examples([
            ["What might have been missed in this patient's treatment?"],
            ["Are there any medication conflicts in these records?"],
            ["What abnormal results require follow-up?"]
        ], inputs=msg_input)

    return demo

if __name__ == "__main__":
    print("Initializing medical analysis agent...")
    agent = init_agent()
    
    print("Launching interface...")
    demo = create_ui(agent)
    demo.queue(concurrency_count=2).launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        share=True
    )