CPS-Test-Mobile / ui /ui_core.py
Ali2206's picture
Update ui/ui_core.py
1777737 verified
raw
history blame
3.92 kB
import gradio as gr
import os
import sys
import pandas as pd
import pdfplumber
# Add src to Python path
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
from txagent.txagent import TxAgent
def extract_all_text_from_csv(file_path):
try:
df = pd.read_csv(file_path, low_memory=False)
return df.to_string(index=False)
except Exception as e:
return f"Error parsing CSV: {e}"
def extract_all_text_from_pdf(file_path):
extracted = []
try:
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
tables = page.extract_tables()
for table in tables:
for row in table:
if any(row):
extracted.append("\t".join([cell or "" for cell in row]))
return "\n".join(extracted)
except Exception as e:
return f"Error parsing PDF: {e}"
def create_ui(agent: TxAgent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🧠 CPS: Clinical Processing System</h1>")
chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages")
# Hidden file upload, attached to input bar
with gr.Row():
uploaded_files = gr.File(
label="📎", file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv"],
file_count="multiple", visible=False
)
with gr.Column(scale=10):
message_input = gr.Textbox(
placeholder="Type your medical question or upload files...", show_label=False, scale=10
)
with gr.Column(scale=1, min_width=60):
file_icon = gr.UploadButton("📎", file_types=[".pdf", ".csv", ".docx", ".txt", ".jpg", ".png"], file_count="multiple")
send_button = gr.Button("Send", variant="primary")
conversation_state = gr.State([])
def handle_chat(message, history, conversation, new_files):
context = (
"You are a clinical AI reviewing medical interview or form data. "
"Analyze the extracted content and reason step-by-step about what the doctor could have missed. "
"Don't answer yet — just reason."
)
if new_files:
extracted_text = ""
for file in new_files:
path = file.name
if path.endswith(".csv"):
extracted_text += extract_all_text_from_csv(path) + "\n"
elif path.endswith(".pdf"):
extracted_text += extract_all_text_from_pdf(path) + "\n"
else:
extracted_text += f"(Uploaded file: {os.path.basename(path)})\n"
message = f"{context}\n\n---\n{extracted_text.strip()}\n---\n\nNow reason what the doctor might have missed."
generator = agent.run_gradio_chat(
message=message,
history=history,
temperature=0.3,
max_new_tokens=1024,
max_token=8192,
call_agent=False,
conversation=conversation,
uploaded_files=new_files,
max_round=30
)
for update in generator:
yield update
# Bind send logic
file_icon.upload(fn=None, inputs=[], outputs=[uploaded_files])
send_button.click(fn=handle_chat, inputs=[message_input, chatbot, conversation_state, uploaded_files], outputs=chatbot)
message_input.submit(fn=handle_chat, inputs=[message_input, chatbot, conversation_state, uploaded_files], outputs=chatbot)
gr.Examples([["Upload your medical form and ask what the doctor might’ve missed."]], inputs=message_input)
return demo