CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
ecb8e1d verified
raw
history blame
7.09 kB
# Optimized app.py with lazy loading and preloading thread, fixed chatbot format and startup error handling
import os
import gradio as gr
from typing import List
import hashlib
import time
import json
import re
from concurrent.futures import ThreadPoolExecutor, as_completed
from threading import Thread
import pandas as pd
import pdfplumber
# Optimized environment setup
os.environ.update({
"HF_HOME": "/data/hf_cache",
"VLLM_CACHE_DIR": "/data/vllm_cache",
"TOKENIZERS_PARALLELISM": "false",
"CUDA_LAUNCH_BLOCKING": "1"
})
# Create cache directories if they don't exist
os.makedirs("/data/hf_cache", exist_ok=True)
os.makedirs("/data/tool_cache", exist_ok=True)
os.makedirs("/data/file_cache", exist_ok=True)
os.makedirs("/data/reports", exist_ok=True)
os.makedirs("/data/vllm_cache", exist_ok=True)
# Lazy loading of heavy dependencies
def lazy_load_agent():
from txagent.txagent import TxAgent
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": "/data/tool_cache/new_tool.json"},
force_finish=True,
enable_checker=True,
step_rag_num=8,
seed=100,
additional_default_tools=[],
)
agent.init_model()
return agent
# Pre-load the agent in a separate thread
agent = None
def preload_agent():
global agent
agent = lazy_load_agent()
Thread(target=preload_agent).start()
# File processing functions
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_priority_pages(file_path: str, max_pages: int = 10) -> str:
try:
with pdfplumber.open(file_path) as pdf:
return "\n\n".join(
f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}"
for i, page in enumerate(pdf.pages[:max_pages])
)
except Exception as e:
return f"PDF processing error: {str(e)}"
def process_file(file_path: str, file_type: str) -> str:
try:
h = file_hash(file_path)
cache_path = f"/data/file_cache/{h}.json"
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
content = extract_priority_pages(file_path)
result = json.dumps({"filename": os.path.basename(file_path), "content": content})
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str)
result = json.dumps({"filename": os.path.basename(file_path), "rows": df.fillna("").values.tolist()})
elif file_type in ["xls", "xlsx"]:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
result = json.dumps({"filename": os.path.basename(file_path), "rows": df.fillna("").values.tolist()})
else:
return json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": str(e)})
def format_response(response: str) -> str:
response = response.replace("[TOOL_CALLS]", "").strip()
if "Based on the medical records provided" in response:
parts = response.split("Based on the medical records provided")
response = "Based on the medical records provided" + parts[-1]
replacements = {
"1. **Missed Diagnoses**:": "### πŸ” Missed Diagnoses",
"2. **Medication Conflicts**:": "\n### πŸ’Š Medication Conflicts",
"3. **Incomplete Assessments**:": "\n### πŸ“‹ Incomplete Assessments",
"4. **Abnormal Results Needing Follow-up**:": "\n### ⚠️ Abnormal Results Needing Follow-up",
"Overall, the patient's medical records": "\n### πŸ“ Overall Assessment"
}
for old, new in replacements.items():
response = response.replace(old, new)
return response
def analyze_files(message: str, history: List, files: List):
try:
while agent is None:
time.sleep(0.1)
history.append([message, None])
yield history, None
extracted_data = ""
if files:
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(process_file, f.name, f.name.split(".")[-1].lower())
for f in files if hasattr(f, 'name')]
extracted_data = "\n".join(f.result() for f in as_completed(futures))
prompt = f"""Review these medical records:
{extracted_data[:10000]}
Identify:
1. Potential missed diagnoses
2. Medication conflicts
3. Incomplete assessments
4. Abnormal results needing follow-up
Analysis:"""
response = ""
for chunk in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=800,
max_token=3000
):
if isinstance(chunk, str):
response += chunk
elif isinstance(chunk, list):
response += "".join(getattr(c, 'content', '') for c in chunk)
formatted = format_response(response)
if formatted.strip():
history[-1][1] = formatted
yield history, None
final_output = format_response(response) or "No clear oversights identified."
history[-1][1] = final_output
yield history, None
except Exception as e:
history[-1][1] = f"❌ Error: {str(e)}"
yield history, None
# UI definition
with gr.Blocks(title="Clinical Oversight Assistant") as demo:
gr.Markdown("""
<div style='text-align: center;'>
<h1>🩺 Clinical Oversight Assistant</h1>
<p>Upload medical records to analyze for potential oversights in patient care</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
file_upload = gr.File(label="Upload Medical Records", file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
query = gr.Textbox(label="Your Query", placeholder="Ask about potential oversights...", lines=3)
submit = gr.Button("Analyze", variant="primary")
gr.Examples([
["What potential diagnoses might have been missed?"],
["Are there any medication conflicts I should be aware of?"],
["What assessments appear incomplete in these records?"]
], inputs=query)
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="Analysis Results", height=600, type="messages")
submit.click(analyze_files, inputs=[query, chatbot, file_upload], outputs=[chatbot, gr.File(visible=False)])
query.submit(analyze_files, inputs=[query, chatbot, file_upload], outputs=[chatbot, gr.File(visible=False)])
if __name__ == "__main__":
demo.queue().launch(server_name="0.0.0.0", server_port=7860, show_error=True)