File size: 7,094 Bytes
c441954
 
5f7a1a1
7323cb6
5f7a1a1
7323cb6
 
5f7a1a1
7323cb6
5f7a1a1
 
 
 
e24be23
5f7a1a1
1da2cfd
5f7a1a1
 
1da2cfd
 
 
dae38a2
5f7a1a1
 
 
 
 
 
 
 
 
 
c441954
5f7a1a1
 
 
 
 
 
 
 
 
 
 
 
dae38a2
5f7a1a1
 
 
 
 
dae38a2
5f7a1a1
7323cb6
5f7a1a1
7323cb6
 
 
 
5f7a1a1
1da2cfd
 
5f7a1a1
 
 
 
1da2cfd
 
e24be23
5f7a1a1
dae38a2
 
5f7a1a1
c441954
7323cb6
5f7a1a1
 
c441954
1da2cfd
5f7a1a1
 
1da2cfd
5f7a1a1
 
dae38a2
5f7a1a1
 
dae38a2
 
 
7323cb6
 
dae38a2
c441954
7323cb6
5f7a1a1
e24be23
7323cb6
 
 
 
5f7a1a1
c441954
5f7a1a1
 
 
 
 
 
 
c441954
5f7a1a1
 
c441954
5f7a1a1
7323cb6
5f7a1a1
7323cb6
5f7a1a1
 
c441954
5f7a1a1
7323cb6
c441954
7323cb6
5f7a1a1
7323cb6
5f7a1a1
c441954
5f7a1a1
c441954
5f7a1a1
 
7323cb6
5f7a1a1
 
 
 
 
7323cb6
5f7a1a1
c441954
5f7a1a1
7323cb6
5f7a1a1
7323cb6
 
5f7a1a1
 
7323cb6
 
5f7a1a1
7323cb6
5f7a1a1
c441954
5f7a1a1
7323cb6
5f7a1a1
7323cb6
c441954
5f7a1a1
 
7323cb6
c441954
5f7a1a1
 
 
7323cb6
c441954
 
5f7a1a1
c441954
 
5f7a1a1
 
 
c441954
5f7a1a1
c441954
 
 
5f7a1a1
c441954
 
 
 
 
 
 
 
 
 
 
e24be23
 
c441954
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Optimized app.py with lazy loading and preloading thread, fixed chatbot format and startup error handling

import os
import gradio as gr
from typing import List
import hashlib
import time
import json
import re
from concurrent.futures import ThreadPoolExecutor, as_completed
from threading import Thread
import pandas as pd
import pdfplumber

# Optimized environment setup
os.environ.update({
    "HF_HOME": "/data/hf_cache",
    "VLLM_CACHE_DIR": "/data/vllm_cache",
    "TOKENIZERS_PARALLELISM": "false",
    "CUDA_LAUNCH_BLOCKING": "1"
})

# Create cache directories if they don't exist
os.makedirs("/data/hf_cache", exist_ok=True)
os.makedirs("/data/tool_cache", exist_ok=True)
os.makedirs("/data/file_cache", exist_ok=True)
os.makedirs("/data/reports", exist_ok=True)
os.makedirs("/data/vllm_cache", exist_ok=True)

# Lazy loading of heavy dependencies
def lazy_load_agent():
    from txagent.txagent import TxAgent

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": "/data/tool_cache/new_tool.json"},
        force_finish=True,
        enable_checker=True,
        step_rag_num=8,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    return agent

# Pre-load the agent in a separate thread
agent = None
def preload_agent():
    global agent
    agent = lazy_load_agent()

Thread(target=preload_agent).start()

# File processing functions
def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_priority_pages(file_path: str, max_pages: int = 10) -> str:
    try:
        with pdfplumber.open(file_path) as pdf:
            return "\n\n".join(
                f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}"
                for i, page in enumerate(pdf.pages[:max_pages])
            )
    except Exception as e:
        return f"PDF processing error: {str(e)}"

def process_file(file_path: str, file_type: str) -> str:
    try:
        h = file_hash(file_path)
        cache_path = f"/data/file_cache/{h}.json"

        if os.path.exists(cache_path):
            with open(cache_path, "r", encoding="utf-8") as f:
                return f.read()

        if file_type == "pdf":
            content = extract_priority_pages(file_path)
            result = json.dumps({"filename": os.path.basename(file_path), "content": content})
        elif file_type == "csv":
            df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str)
            result = json.dumps({"filename": os.path.basename(file_path), "rows": df.fillna("").values.tolist()})
        elif file_type in ["xls", "xlsx"]:
            df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            result = json.dumps({"filename": os.path.basename(file_path), "rows": df.fillna("").values.tolist()})
        else:
            return json.dumps({"error": f"Unsupported file type: {file_type}"})

        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        return result

    except Exception as e:
        return json.dumps({"error": str(e)})

def format_response(response: str) -> str:
    response = response.replace("[TOOL_CALLS]", "").strip()
    if "Based on the medical records provided" in response:
        parts = response.split("Based on the medical records provided")
        response = "Based on the medical records provided" + parts[-1]

    replacements = {
        "1. **Missed Diagnoses**:": "### πŸ” Missed Diagnoses",
        "2. **Medication Conflicts**:": "\n### πŸ’Š Medication Conflicts",
        "3. **Incomplete Assessments**:": "\n### πŸ“‹ Incomplete Assessments",
        "4. **Abnormal Results Needing Follow-up**:": "\n### ⚠️ Abnormal Results Needing Follow-up",
        "Overall, the patient's medical records": "\n### πŸ“ Overall Assessment"
    }

    for old, new in replacements.items():
        response = response.replace(old, new)

    return response

def analyze_files(message: str, history: List, files: List):
    try:
        while agent is None:
            time.sleep(0.1)

        history.append([message, None])
        yield history, None

        extracted_data = ""
        if files:
            with ThreadPoolExecutor(max_workers=4) as executor:
                futures = [executor.submit(process_file, f.name, f.name.split(".")[-1].lower()) 
                           for f in files if hasattr(f, 'name')]
                extracted_data = "\n".join(f.result() for f in as_completed(futures))

        prompt = f"""Review these medical records:
{extracted_data[:10000]}

Identify:
1. Potential missed diagnoses
2. Medication conflicts
3. Incomplete assessments
4. Abnormal results needing follow-up

Analysis:"""

        response = ""
        for chunk in agent.run_gradio_chat(
            message=prompt,
            history=[],
            temperature=0.2,
            max_new_tokens=800,
            max_token=3000
        ):
            if isinstance(chunk, str):
                response += chunk
            elif isinstance(chunk, list):
                response += "".join(getattr(c, 'content', '') for c in chunk)

            formatted = format_response(response)
            if formatted.strip():
                history[-1][1] = formatted
                yield history, None

        final_output = format_response(response) or "No clear oversights identified."
        history[-1][1] = final_output
        yield history, None

    except Exception as e:
        history[-1][1] = f"❌ Error: {str(e)}"
        yield history, None

# UI definition
with gr.Blocks(title="Clinical Oversight Assistant") as demo:
    gr.Markdown("""
    <div style='text-align: center;'>
        <h1>🩺 Clinical Oversight Assistant</h1>
        <p>Upload medical records to analyze for potential oversights in patient care</p>
    </div>
    """)

    with gr.Row():
        with gr.Column(scale=1):
            file_upload = gr.File(label="Upload Medical Records", file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
            query = gr.Textbox(label="Your Query", placeholder="Ask about potential oversights...", lines=3)
            submit = gr.Button("Analyze", variant="primary")
            gr.Examples([
                ["What potential diagnoses might have been missed?"],
                ["Are there any medication conflicts I should be aware of?"],
                ["What assessments appear incomplete in these records?"]
            ], inputs=query)

        with gr.Column(scale=2):
            chatbot = gr.Chatbot(label="Analysis Results", height=600, type="messages")

    submit.click(analyze_files, inputs=[query, chatbot, file_upload], outputs=[chatbot, gr.File(visible=False)])
    query.submit(analyze_files, inputs=[query, chatbot, file_upload], outputs=[chatbot, gr.File(visible=False)])

if __name__ == "__main__":
    demo.queue().launch(server_name="0.0.0.0", server_port=7860, show_error=True)