CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
e594ff1 verified
raw
history blame
15.3 kB
import sys
import os
import pandas as pd
import gradio as gr
from typing import List, Tuple, Dict, Any, Union
import shutil
import re
from datetime import datetime
import time
from transformers import AutoTokenizer
import asyncio
import logging
from concurrent.futures import ThreadPoolExecutor, as_completed
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants
MAX_MODEL_TOKENS = 131072 # TxAgent's max token limit
MAX_CHUNK_TOKENS = 32768 # Larger chunks to reduce number of chunks
MAX_NEW_TOKENS = 512 # Optimized for fast generation
PROMPT_OVERHEAD = 500 # Estimated tokens for prompt template
MAX_CONCURRENT = 8 # High concurrency for A100 80GB
# Initialize tokenizer for precise token counting
try:
tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
except Exception as e:
print(f"Warning: Could not load tokenizer, falling back to heuristic: {str(e)}")
tokenizer = None
# Setup logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
def clean_response(text: str) -> str:
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
"""Estimate tokens using tokenizer if available, else fall back to heuristic."""
if tokenizer:
return len(tokenizer.encode(text, add_special_tokens=False))
return len(text) // 3.5 + 1
def extract_text_from_excel(file_path: str) -> str:
"""Extract text from all sheets in an Excel file."""
all_text = []
try:
xls = pd.ExcelFile(file_path)
for sheet_name in xls.sheet_names:
df = xls.parse(sheet_name)
df = df.astype(str).fillna("")
rows = df.apply(lambda row: " | ".join(row), axis=1)
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
all_text.extend(sheet_text)
except Exception as e:
raise ValueError(f"Failed to extract text from Excel file: {str(e)}")
return "\n".join(all_text)
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
"""Split text into chunks within token limits, accounting for prompt overhead."""
effective_max_tokens = max_tokens - PROMPT_OVERHEAD
if effective_max_tokens <= 0:
raise ValueError(f"Effective max tokens ({effective_max_tokens}) must be positive.")
lines = text.split("\n")
chunks = []
current_chunk = []
current_tokens = 0
for line in lines:
line_tokens = estimate_tokens(line)
if current_tokens + line_tokens > effective_max_tokens:
if current_chunk:
chunks.append("\n".join(current_chunk))
current_chunk = [line]
current_tokens = line_tokens
else:
current_chunk.append(line)
current_tokens += line_tokens
if current_chunk:
chunks.append("\n".join(current_chunk))
return chunks
def build_prompt_from_text(chunk: str) -> str:
"""Build a prompt for analyzing a chunk of clinical data."""
return f"""
### Unstructured Clinical Records
You are reviewing unstructured, mixed-format clinical documentation from various forms, tables, and sheets.
**Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps.
Here is the extracted content chunk:
{chunk}
Please analyze the above and provide:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
"""
def init_agent():
"""Initialize the TxAgent with optimized vLLM settings for A100 80GB."""
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[]
)
agent.init_model()
return agent
async def process_chunk(agent, chunk: str, chunk_index: int, total_chunks: int) -> Tuple[int, str, str]:
"""Process a single chunk and return index, response, and status message."""
logger.info(f"Processing chunk {chunk_index+1}/{total_chunks}")
prompt = build_prompt_from_text(chunk)
prompt_tokens = estimate_tokens(prompt)
if prompt_tokens > MAX_MODEL_TOKENS:
error_msg = f"❌ Chunk {chunk_index+1} prompt too long ({prompt_tokens} tokens). Skipping..."
logger.warning(error_msg)
return chunk_index, "", error_msg
response = ""
try:
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
response += result
elif hasattr(result, "content"):
response += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
response += r.content
status = f"βœ… Chunk {chunk_index+1} analysis complete"
logger.info(status)
except Exception as e:
status = f"❌ Error analyzing chunk {chunk_index+1}: {str(e)}"
logger.error(status)
response = ""
return chunk_index, clean_response(response), status
async def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
"""Process the Excel file and generate a final report."""
messages = chatbot_state if chatbot_state else []
report_path = None
if file is None or not hasattr(file, "name"):
messages.append({"role": "assistant", "content": "❌ Please upload a valid Excel file before analyzing."})
return messages, report_path
try:
messages.append({"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"})
messages.append({"role": "assistant", "content": "⏳ Extracting and analyzing data..."})
# Extract text and split into chunks
start_time = time.time()
extracted_text = extract_text_from_excel(file.name)
chunks = split_text_into_chunks(extracted_text, max_tokens=MAX_CHUNK_TOKENS)
logger.info(f"Extracted text and split into {len(chunks)} chunks in {time.time() - start_time:.2f} seconds")
chunk_responses = [None] * len(chunks)
batch_size = MAX_CONCURRENT
# Process chunks in batches
for batch_start in range(0, len(chunks), batch_size):
batch_chunks = chunks[batch_start:batch_start + batch_size]
batch_indices = list(range(batch_start, min(batch_start + batch_size, len(chunks))))
logger.info(f"Processing batch {batch_start//batch_size + 1}/{(len(chunks) + batch_size - 1)//batch_size}")
with ThreadPoolExecutor(max_workers=MAX_CONCURRENT) as executor:
futures = [
executor.submit(lambda c, i: asyncio.run(process_chunk(agent, c, i, len(chunks))), chunk, i)
for i, chunk in zip(batch_indices, batch_chunks)
]
for future in as_completed(futures):
chunk_index, response, status = future.result()
chunk_responses[chunk_index] = response
messages.append({"role": "assistant", "content": status})
# Filter out empty responses
chunk_responses = [r for r in chunk_responses if r]
if not chunk_responses:
messages.append({"role": "assistant", "content": "❌ No valid chunk responses to summarize."})
return messages, report_path
# Summarize chunk responses incrementally
summary = ""
current_summary_tokens = 0
for i, response in enumerate(chunk_responses):
response_tokens = estimate_tokens(response)
if current_summary_tokens + response_tokens > MAX_MODEL_TOKENS - PROMPT_OVERHEAD - MAX_NEW_TOKENS:
summary_prompt = f"Summarize the following analysis:\n\n{summary}\n\nProvide a concise summary."
summary_response = ""
try:
for result in agent.run_gradio_chat(
message=summary_prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
summary_response += result
elif hasattr(result, "content"):
summary_response += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
summary_response += r.content
summary = clean_response(summary_response)
current_summary_tokens = estimate_tokens(summary)
except Exception as e:
messages.append({"role": "assistant", "content": f"❌ Error summarizing intermediate results: {str(e)}"})
return messages, report_path
summary += f"\n\n### Chunk {i+1} Analysis\n{response}"
current_summary_tokens += response_tokens
# Final summarization
final_prompt = f"Summarize the key findings from the following analyses:\n\n{summary}"
messages.append({"role": "assistant", "content": "πŸ“Š Generating final report..."})
final_report_text = ""
try:
for result in agent.run_gradio_chat(
message=final_prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
final_report_text += result
elif hasattr(result, "content"):
final_report_text += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
final_report_text += r.content
except Exception as e:
messages.append({"role": "assistant", "content": f"❌ Error generating final report: {str(e)}"})
return messages, report_path
final_report = f"# \U0001f9e0 Final Patient Report\n\n{clean_response(final_report_text)}"
messages[-1]["content"] = f"πŸ“Š Final Report:\n\n{clean_response(final_report_text)}"
# Save the report
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
report_path = os.path.join(report_dir, f"report_{timestamp}.md")
with open(report_path, 'w') as f:
f.write(final_report)
messages.append({"role": "assistant", "content": f"βœ… Report generated and saved: report_{timestamp}.md"})
logger.info(f"Total processing time: {time.time() - start_time:.2f} seconds")
return messages, report_path
except Exception as e:
messages.append({"role": "assistant", "content": f"❌ Error processing file: {str(e)}"})
logger.error(f"Processing failed: {str(e)}")
return messages, report_path
async def create_ui(agent):
"""Create the Gradio UI for the patient history analysis tool."""
with gr.Blocks(title="Patient History Chat", css=".gradio-container {max-width: 900px !important}") as demo:
gr.Markdown("## πŸ₯ Patient History Analysis Tool")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="Clinical Assistant",
show_copy_button=True,
height=600,
type="messages",
avatar_images=(
None,
"https://i.imgur.com/6wX7Zb4.png"
)
)
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload Excel File",
file_types=[".xlsx"],
height=100
)
analyze_btn = gr.Button(
"🧠 Analyze Patient History",
variant="primary"
)
report_output = gr.File(
label="Download Report",
visible=False,
interactive=False
)
# State to maintain chatbot messages
chatbot_state = gr.State(value=[])
async def update_ui(file, current_state):
messages = current_state if current_state else []
messages, report_path = await process_final_report(agent, file, messages)
report_update = gr.update(visible=report_path is not None, value=report_path)
return messages, report_update, messages
analyze_btn.click(
fn=update_ui,
inputs=[file_upload, chatbot_state],
outputs=[chatbot, report_output, chatbot_state],
api_name="analyze"
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = asyncio.run(create_ui(agent))
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=["/data/hf_cache/reports"],
share=False,
inline=False,
max_threads=40
)
except Exception as e:
print(f"Error: {str(e)}")
sys.exit(1)