File size: 15,315 Bytes
f75a23b f394b25 d184610 f394b25 2e8876b 1244d40 d16299c 1c5bd8e d16299c 4b4b32b d8282f1 f6e551c d16299c f6e551c f75a23b d16299c 1244d40 1de8c2b 4b4b32b f6e551c d16299c f6e551c d16299c f6e551c d16299c f6e551c 4b4b32b f6e551c ad85a12 f260d4a ad85a12 f260d4a ad85a12 f260d4a 4b4b32b f260d4a ad85a12 f260d4a 4b4b32b f260d4a ad85a12 f260d4a ad85a12 f260d4a ad85a12 f260d4a ad85a12 f260d4a ad85a12 28e1ce8 ad85a12 f6e551c d16299c 4b4b32b f6e551c 6e39ead f6e551c 6e39ead f6e551c d16299c f6e551c d16299c 13ad0d3 d16299c f6e551c d16299c 4b4b32b 1d89dcd 2e8876b 9a0b74b 2200d70 77810f8 2e8876b 1d89dcd 77810f8 585f453 2e8876b 585f453 f260d4a 4b4b32b 585f453 f260d4a 4b4b32b f260d4a 1d89dcd f260d4a 4b4b32b f260d4a 1d89dcd f260d4a 585f453 f260d4a 585f453 f260d4a 585f453 f260d4a 585f453 f260d4a 585f453 e594ff1 f260d4a 1d89dcd 585f453 f260d4a 2e8876b f260d4a 585f453 4b4b32b 585f453 1d89dcd cd41087 585f453 98f2d10 4b4b32b 1d89dcd affa0af 4b4b32b f260d4a 585f453 98f2d10 585f453 2200d70 585f453 6e39ead 2e8876b 4b4b32b 1d89dcd 2e8876b 5b0bfb5 2e8876b 585f453 a71a831 55e3db0 f394b25 d8282f1 d16299c 4b4b32b 13ad0d3 d8282f1 1bdb280 585f453 1d89dcd d8282f1 13ad0d3 c7670bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import sys
import os
import pandas as pd
import gradio as gr
from typing import List, Tuple, Dict, Any, Union
import shutil
import re
from datetime import datetime
import time
from transformers import AutoTokenizer
import asyncio
import logging
from concurrent.futures import ThreadPoolExecutor, as_completed
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants
MAX_MODEL_TOKENS = 131072 # TxAgent's max token limit
MAX_CHUNK_TOKENS = 32768 # Larger chunks to reduce number of chunks
MAX_NEW_TOKENS = 512 # Optimized for fast generation
PROMPT_OVERHEAD = 500 # Estimated tokens for prompt template
MAX_CONCURRENT = 8 # High concurrency for A100 80GB
# Initialize tokenizer for precise token counting
try:
tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
except Exception as e:
print(f"Warning: Could not load tokenizer, falling back to heuristic: {str(e)}")
tokenizer = None
# Setup logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
def clean_response(text: str) -> str:
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
"""Estimate tokens using tokenizer if available, else fall back to heuristic."""
if tokenizer:
return len(tokenizer.encode(text, add_special_tokens=False))
return len(text) // 3.5 + 1
def extract_text_from_excel(file_path: str) -> str:
"""Extract text from all sheets in an Excel file."""
all_text = []
try:
xls = pd.ExcelFile(file_path)
for sheet_name in xls.sheet_names:
df = xls.parse(sheet_name)
df = df.astype(str).fillna("")
rows = df.apply(lambda row: " | ".join(row), axis=1)
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
all_text.extend(sheet_text)
except Exception as e:
raise ValueError(f"Failed to extract text from Excel file: {str(e)}")
return "\n".join(all_text)
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
"""Split text into chunks within token limits, accounting for prompt overhead."""
effective_max_tokens = max_tokens - PROMPT_OVERHEAD
if effective_max_tokens <= 0:
raise ValueError(f"Effective max tokens ({effective_max_tokens}) must be positive.")
lines = text.split("\n")
chunks = []
current_chunk = []
current_tokens = 0
for line in lines:
line_tokens = estimate_tokens(line)
if current_tokens + line_tokens > effective_max_tokens:
if current_chunk:
chunks.append("\n".join(current_chunk))
current_chunk = [line]
current_tokens = line_tokens
else:
current_chunk.append(line)
current_tokens += line_tokens
if current_chunk:
chunks.append("\n".join(current_chunk))
return chunks
def build_prompt_from_text(chunk: str) -> str:
"""Build a prompt for analyzing a chunk of clinical data."""
return f"""
### Unstructured Clinical Records
You are reviewing unstructured, mixed-format clinical documentation from various forms, tables, and sheets.
**Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps.
Here is the extracted content chunk:
{chunk}
Please analyze the above and provide:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
"""
def init_agent():
"""Initialize the TxAgent with optimized vLLM settings for A100 80GB."""
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[]
)
agent.init_model()
return agent
async def process_chunk(agent, chunk: str, chunk_index: int, total_chunks: int) -> Tuple[int, str, str]:
"""Process a single chunk and return index, response, and status message."""
logger.info(f"Processing chunk {chunk_index+1}/{total_chunks}")
prompt = build_prompt_from_text(chunk)
prompt_tokens = estimate_tokens(prompt)
if prompt_tokens > MAX_MODEL_TOKENS:
error_msg = f"β Chunk {chunk_index+1} prompt too long ({prompt_tokens} tokens). Skipping..."
logger.warning(error_msg)
return chunk_index, "", error_msg
response = ""
try:
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
response += result
elif hasattr(result, "content"):
response += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
response += r.content
status = f"β
Chunk {chunk_index+1} analysis complete"
logger.info(status)
except Exception as e:
status = f"β Error analyzing chunk {chunk_index+1}: {str(e)}"
logger.error(status)
response = ""
return chunk_index, clean_response(response), status
async def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
"""Process the Excel file and generate a final report."""
messages = chatbot_state if chatbot_state else []
report_path = None
if file is None or not hasattr(file, "name"):
messages.append({"role": "assistant", "content": "β Please upload a valid Excel file before analyzing."})
return messages, report_path
try:
messages.append({"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"})
messages.append({"role": "assistant", "content": "β³ Extracting and analyzing data..."})
# Extract text and split into chunks
start_time = time.time()
extracted_text = extract_text_from_excel(file.name)
chunks = split_text_into_chunks(extracted_text, max_tokens=MAX_CHUNK_TOKENS)
logger.info(f"Extracted text and split into {len(chunks)} chunks in {time.time() - start_time:.2f} seconds")
chunk_responses = [None] * len(chunks)
batch_size = MAX_CONCURRENT
# Process chunks in batches
for batch_start in range(0, len(chunks), batch_size):
batch_chunks = chunks[batch_start:batch_start + batch_size]
batch_indices = list(range(batch_start, min(batch_start + batch_size, len(chunks))))
logger.info(f"Processing batch {batch_start//batch_size + 1}/{(len(chunks) + batch_size - 1)//batch_size}")
with ThreadPoolExecutor(max_workers=MAX_CONCURRENT) as executor:
futures = [
executor.submit(lambda c, i: asyncio.run(process_chunk(agent, c, i, len(chunks))), chunk, i)
for i, chunk in zip(batch_indices, batch_chunks)
]
for future in as_completed(futures):
chunk_index, response, status = future.result()
chunk_responses[chunk_index] = response
messages.append({"role": "assistant", "content": status})
# Filter out empty responses
chunk_responses = [r for r in chunk_responses if r]
if not chunk_responses:
messages.append({"role": "assistant", "content": "β No valid chunk responses to summarize."})
return messages, report_path
# Summarize chunk responses incrementally
summary = ""
current_summary_tokens = 0
for i, response in enumerate(chunk_responses):
response_tokens = estimate_tokens(response)
if current_summary_tokens + response_tokens > MAX_MODEL_TOKENS - PROMPT_OVERHEAD - MAX_NEW_TOKENS:
summary_prompt = f"Summarize the following analysis:\n\n{summary}\n\nProvide a concise summary."
summary_response = ""
try:
for result in agent.run_gradio_chat(
message=summary_prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
summary_response += result
elif hasattr(result, "content"):
summary_response += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
summary_response += r.content
summary = clean_response(summary_response)
current_summary_tokens = estimate_tokens(summary)
except Exception as e:
messages.append({"role": "assistant", "content": f"β Error summarizing intermediate results: {str(e)}"})
return messages, report_path
summary += f"\n\n### Chunk {i+1} Analysis\n{response}"
current_summary_tokens += response_tokens
# Final summarization
final_prompt = f"Summarize the key findings from the following analyses:\n\n{summary}"
messages.append({"role": "assistant", "content": "π Generating final report..."})
final_report_text = ""
try:
for result in agent.run_gradio_chat(
message=final_prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
final_report_text += result
elif hasattr(result, "content"):
final_report_text += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
final_report_text += r.content
except Exception as e:
messages.append({"role": "assistant", "content": f"β Error generating final report: {str(e)}"})
return messages, report_path
final_report = f"# \U0001f9e0 Final Patient Report\n\n{clean_response(final_report_text)}"
messages[-1]["content"] = f"π Final Report:\n\n{clean_response(final_report_text)}"
# Save the report
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
report_path = os.path.join(report_dir, f"report_{timestamp}.md")
with open(report_path, 'w') as f:
f.write(final_report)
messages.append({"role": "assistant", "content": f"β
Report generated and saved: report_{timestamp}.md"})
logger.info(f"Total processing time: {time.time() - start_time:.2f} seconds")
return messages, report_path
except Exception as e:
messages.append({"role": "assistant", "content": f"β Error processing file: {str(e)}"})
logger.error(f"Processing failed: {str(e)}")
return messages, report_path
async def create_ui(agent):
"""Create the Gradio UI for the patient history analysis tool."""
with gr.Blocks(title="Patient History Chat", css=".gradio-container {max-width: 900px !important}") as demo:
gr.Markdown("## π₯ Patient History Analysis Tool")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="Clinical Assistant",
show_copy_button=True,
height=600,
type="messages",
avatar_images=(
None,
"https://i.imgur.com/6wX7Zb4.png"
)
)
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload Excel File",
file_types=[".xlsx"],
height=100
)
analyze_btn = gr.Button(
"π§ Analyze Patient History",
variant="primary"
)
report_output = gr.File(
label="Download Report",
visible=False,
interactive=False
)
# State to maintain chatbot messages
chatbot_state = gr.State(value=[])
async def update_ui(file, current_state):
messages = current_state if current_state else []
messages, report_path = await process_final_report(agent, file, messages)
report_update = gr.update(visible=report_path is not None, value=report_path)
return messages, report_update, messages
analyze_btn.click(
fn=update_ui,
inputs=[file_upload, chatbot_state],
outputs=[chatbot, report_output, chatbot_state],
api_name="analyze"
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = asyncio.run(create_ui(agent))
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=["/data/hf_cache/reports"],
share=False,
inline=False,
max_threads=40
)
except Exception as e:
print(f"Error: {str(e)}")
sys.exit(1) |