CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
dda4a06 verified
raw
history blame
17.4 kB
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Dict, Optional, Generator
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
import time
from transformers import AutoTokenizer
from functools import lru_cache
import numpy as np
from difflib import SequenceMatcher
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
MAX_TOKENS = 1800
BATCH_SIZE = 1
MAX_WORKERS = 2
CHUNK_SIZE = 5
MODEL_MAX_TOKENS = 131072
MAX_TEXT_LENGTH = 500000
# Persistent directory setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ.update({
"HF_HOME": model_cache_dir,
"TRANSFORMERS_CACHE": model_cache_dir,
"VLLM_CACHE_DIR": vllm_cache_dir,
"TOKENIZERS_PARALLELISM": "false",
"CUDA_LAUNCH_BLOCKING": "1"
})
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Initialize cache with 10GB limit
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)
@lru_cache(maxsize=1)
def get_tokenizer():
return AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
hash_md5 = hashlib.md5()
with open(path, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def extract_pdf_page(page, tokenizer, max_tokens=MAX_TOKENS) -> List[str]:
try:
text = page.extract_text() or ""
text = sanitize_utf8(text)
if len(text) > MAX_TEXT_LENGTH // 10:
text = text[:MAX_TEXT_LENGTH // 10]
tokens = tokenizer.encode(text, add_special_tokens=False)
if len(tokens) > max_tokens:
chunks = []
current_chunk = []
current_length = 0
for token in tokens:
if current_length + 1 > max_tokens:
chunks.append(tokenizer.decode(current_chunk))
current_chunk = [token]
current_length = 1
else:
current_chunk.append(token)
current_length += 1
if current_chunk:
chunks.append(tokenizer.decode(current_chunk))
return [f"=== Page {page.page_number} ===\n{c}" for c in chunks]
return [f"=== Page {page.page_number} ===\n{text}"]
except Exception as e:
logger.warning(f"Error extracting page {page.page_number}: {str(e)}")
return []
def extract_all_pages(file_path: str, progress_callback=None) -> List[str]:
try:
tokenizer = get_tokenizer()
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
if total_pages == 0:
return []
results = []
total_tokens = 0
for chunk_start in range(0, total_pages, CHUNK_SIZE):
chunk_end = min(chunk_start + CHUNK_SIZE, total_pages)
with pdfplumber.open(file_path) as pdf:
with ThreadPoolExecutor(max_workers=min(CHUNK_SIZE, 2)) as executor:
futures = [executor.submit(extract_pdf_page, pdf.pages[i], tokenizer)
for i in range(chunk_start, chunk_end)]
for future in as_completed(futures):
page_chunks = future.result()
for chunk in page_chunks:
chunk_tokens = len(tokenizer.encode(chunk, add_special_tokens=False))
if total_tokens + chunk_tokens > MODEL_MAX_TOKENS:
logger.warning(f"Total tokens exceed model limit. Stopping.")
return results
results.append(chunk)
total_tokens += chunk_tokens
if progress_callback:
progress_callback(min(chunk_end, total_pages), total_pages)
del pdf
gc.collect()
return results
except Exception as e:
logger.error(f"PDF processing error: {e}")
return [f"PDF processing error: {str(e)}"]
def excel_to_json(file_path: str) -> List[Dict]:
try:
# Try with openpyxl first
try:
with pd.ExcelFile(file_path, engine='openpyxl') as excel_file:
sheets = excel_file.sheet_names
results = []
for sheet_name in sheets:
df = pd.read_excel(
excel_file,
sheet_name=sheet_name,
header=None,
dtype=str,
na_filter=False
)
if not df.empty:
results.append({
"filename": f"{os.path.basename(file_path)} - {sheet_name}",
"rows": df.values.tolist(),
"type": "excel"
})
return results if results else [{"error": "No data found in any sheet"}]
except Exception as openpyxl_error:
# Fallback to xlrd
try:
with pd.ExcelFile(file_path, engine='xlrd') as excel_file:
sheets = excel_file.sheet_names
results = []
for sheet_name in sheets:
df = pd.read_excel(
excel_file,
sheet_name=sheet_name,
header=None,
dtype=str,
na_filter=False
)
if not df.empty:
results.append({
"filename": f"{os.path.basename(file_path)} - {sheet_name}",
"rows": df.values.tolist(),
"type": "excel"
})
return results if results else [{"error": "No data found in any sheet"}]
except Exception as xlrd_error:
logger.error(f"Excel processing failed: {xlrd_error}")
return [{"error": f"Excel processing failed: {str(xlrd_error)}"}]
except Exception as e:
logger.error(f"Excel file opening error: {e}")
return [{"error": f"Excel file opening error: {str(e)}"}]
def csv_to_json(file_path: str) -> List[Dict]:
try:
chunks = []
for chunk in pd.read_csv(
file_path,
header=None,
dtype=str,
encoding_errors='replace',
on_bad_lines='skip',
chunksize=10000,
na_filter=False
):
chunks.append(chunk)
df = pd.concat(chunks) if chunks else pd.DataFrame()
return [{
"filename": os.path.basename(file_path),
"rows": df.values.tolist(),
"type": "csv"
}]
except Exception as e:
logger.error(f"CSV processing error: {e}")
return [{"error": f"CSV processing error: {str(e)}"}]
@lru_cache(maxsize=100)
def process_file_cached(file_path: str, file_type: str) -> List[Dict]:
try:
if file_type == "pdf":
chunks = extract_all_pages(file_path)
return [{
"filename": os.path.basename(file_path),
"content": chunk,
"status": "initial",
"type": "pdf"
} for chunk in chunks]
elif file_type in ["xls", "xlsx"]:
return excel_to_json(file_path)
elif file_type == "csv":
return csv_to_json(file_path)
else:
return [{"error": f"Unsupported file type: {file_type}"}]
except Exception as e:
logger.error(f"Error processing file: {e}")
return [{"error": f"Error processing file: {str(e)}"}]
def clean_response(text: str) -> str:
if not text:
return ""
patterns = [
(re.compile(r"\[.*?\]|\bNone\b", re.IGNORECASE), ""),
(re.compile(r"\s+"), " "),
(re.compile(r"[^\w\s\.\,\(\)\-]"), ""),
]
for pattern, repl in patterns:
text = pattern.sub(repl, text)
sentences = text.split(". ")
unique_sentences = []
seen = set()
for s in sentences:
if not s:
continue
is_unique = True
for seen_s in seen:
if SequenceMatcher(None, s.lower(), seen_s.lower()).ratio() > 0.9:
is_unique = False
break
if is_unique:
unique_sentences.append(s)
seen.add(s)
text = ". ".join(unique_sentences).strip()
return text if text else "No missed diagnoses identified."
@lru_cache(maxsize=1)
def init_agent():
logger.info("Initializing model...")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=False,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
logger.info("Agent Ready")
return agent
def create_ui(agent):
PROMPT_TEMPLATE = """
Analyze the patient record excerpt for missed diagnoses. Provide detailed, evidence-based analysis.
Patient Record Excerpt (Chunk {0} of {1}):
{chunk}
"""
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="Analysis Summary", height=600)
msg_input = gr.Textbox(placeholder="Ask about potential oversights...")
send_btn = gr.Button("Analyze", variant="primary")
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
with gr.Column(scale=1):
final_summary = gr.Markdown(label="Missed Diagnoses Summary")
download_output = gr.File(label="Download Detailed Report")
progress_bar = gr.Progress()
def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()):
history.append({"role": "user", "content": message})
yield history, None, ""
extracted = []
file_hash_value = ""
if files:
for f in files:
file_type = f.name.split(".")[-1].lower()
cache_key = f"{file_hash(f.name)}_{file_type}"
if cache_key in cache:
extracted.extend(cache[cache_key])
history.append({"role": "assistant", "content": f"Using cached data for {os.path.basename(f.name)}"})
yield history, None, ""
else:
result = process_file_cached(f.name, file_type)
if result and not (len(result) == 1 and "error" in result[0]):
cache[cache_key] = result
extracted.extend(result)
history.append({"role": "assistant", "content": f"Processed {os.path.basename(f.name)}"})
yield history, None, ""
else:
error_msg = result[0]["error"] if result else "Unknown error"
history.append({"role": "assistant", "content": f"Failed to process {os.path.basename(f.name)}: {error_msg}"})
yield history, None, error_msg
return
file_hash_value = file_hash(files[0].name) if files else ""
if not extracted:
history.append({"role": "assistant", "content": "❌ No valid content extracted"})
yield history, None, "No valid content extracted"
return
chunks = [item["content"] for item in extracted if "content" in item]
if not chunks:
history.append({"role": "assistant", "content": "❌ No processable content found"})
yield history, None, "No processable content found"
return
combined_response = ""
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
try:
for batch_idx in range(0, len(chunks), BATCH_SIZE):
batch_chunks = chunks[batch_idx:batch_idx + BATCH_SIZE]
batch_prompts = [
PROMPT_TEMPLATE.format(
batch_idx + i + 1,
len(chunks),
chunk=chunk[:1800]
)
for i, chunk in enumerate(batch_chunks)
]
progress(batch_idx / len(chunks),
desc=f"Processing batch {(batch_idx // BATCH_SIZE) + 1}/{(len(chunks) + BATCH_SIZE - 1) // BATCH_SIZE}")
with ThreadPoolExecutor(max_workers=min(BATCH_SIZE, MAX_WORKERS)) as executor:
futures = {
executor.submit(
agent.run_quick_summary,
chunk, 0.2, 256, 1024
): idx
for idx, chunk in enumerate(batch_chunks)
}
for future in as_completed(futures):
chunk_idx = futures[future]
try:
response = clean_response(future.result())
if response:
combined_response += f"--- Analysis for Chunk {batch_idx + chunk_idx + 1} ---\n{response}\n"
history[-1] = {"role": "assistant", "content": combined_response.strip()}
yield history, None, ""
except Exception as e:
logger.error(f"Chunk processing error: {e}")
history[-1] = {"role": "assistant", "content": f"Error processing chunk: {str(e)}"}
yield history, None, ""
finally:
del future
torch.cuda.empty_cache()
gc.collect()
summary = "Analysis complete. " + ("Download full report below." if report_path and os.path.exists(report_path) else "")
history.append({"role": "assistant", "content": "Analysis completed successfully"})
yield history, report_path, summary
except Exception as e:
logger.error(f"Analysis error: {e}")
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
yield history, None, f"Error occurred: {str(e)}"
finally:
torch.cuda.empty_cache()
gc.collect()
send_btn.click(
analyze,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output, final_summary]
)
msg_input.submit(
analyze,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output, final_summary]
)
return demo
if __name__ == "__main__":
try:
logger.info("Launching app...")
agent = init_agent()
demo = create_ui(agent)
demo.queue().launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
except Exception as e:
logger.error(f"Fatal error: {e}")
raise