CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
dae38a2 verified
raw
history blame
9.67 kB
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Optional
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import time
from functools import lru_cache
# Environment and path setup
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
# Configure cache directories
base_dir = "/data"
model_cache_dir = os.path.join(base_dir, "txagent_models")
tool_cache_dir = os.path.join(base_dir, "tool_cache")
file_cache_dir = os.path.join(base_dir, "cache")
os.makedirs(model_cache_dir, exist_ok=True)
os.makedirs(tool_cache_dir, exist_ok=True)
os.makedirs(file_cache_dir, exist_ok=True)
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["HF_HOME"] = model_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
from txagent.txagent import TxAgent
# Utility functions
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
@lru_cache(maxsize=100)
def get_cached_response(prompt: str, file_hash: str) -> Optional[str]:
"""Cache for frequent queries"""
return None # Implement actual cache lookup if needed
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
return open(cache_path, "r", encoding="utf-8").read()
if file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None,
dtype=str, skip_blank_lines=False, on_bad_lines="skip")
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
elif file_type == "pdf":
with pdfplumber.open(file_path) as pdf:
text = "\n".join([page.extract_text() or "" for page in pdf.pages])
result = json.dumps({"filename": os.path.basename(file_path), "content": text.strip()})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
else:
return json.dumps({"error": f"Unsupported file type: {file_type}"})
if df is None or df.empty:
return json.dumps({"warning": f"No data extracted from: {file_path}"})
df = df.fillna("")
content = df.astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error reading {os.path.basename(file_path)}: {str(e)}"})
def convert_files_to_json_parallel(uploaded_files: list) -> str:
"""Process files in parallel using ThreadPool"""
extracted_text = []
with ThreadPoolExecutor(max_workers=4) as executor:
futures = []
for file in uploaded_files:
if not hasattr(file, 'name'):
continue
path = file.name
ext = path.split(".")[-1].lower()
futures.append(executor.submit(convert_file_to_json, path, ext))
for future in as_completed(futures):
extracted_text.append(sanitize_utf8(future.result()))
return "\n".join(extracted_text)
def init_agent():
"""Initialize the TxAgent with optimized settings"""
# Copy default tool file if needed
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B"
rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B"
agent = TxAgent(
model_name=model_name,
rag_model_name=rag_model_name,
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=8, # Reduced from 10
seed=100,
additional_default_tools=[],
torch_dtype="auto",
device_map="auto",
load_in_4bit=False,
load_in_8bit=False
)
agent.init_model()
return agent
def create_ui(agent: TxAgent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>📋 CPS: Clinical Patient Support System</h1>")
chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages")
file_upload = gr.File(
label="Upload Medical File",
file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"],
file_count="multiple"
)
message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False)
send_button = gr.Button("Send", variant="primary")
conversation_state = gr.State([])
def handle_chat(message: str, history: list, conversation: list, uploaded_files: list, progress=gr.Progress()):
start_time = time.time()
try:
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": "⏳ Processing your request..."})
yield history
# File processing with timing
file_process_time = time.time()
extracted_text = ""
if uploaded_files and isinstance(uploaded_files, list):
extracted_text = convert_files_to_json_parallel(uploaded_files)
print(f"File processing took: {time.time() - file_process_time:.2f}s")
context = (
"You are an expert clinical AI assistant. Review this patient's history, "
"medications, and notes, and ONLY provide a final answer summarizing "
"what the doctor might have missed."
)
chunked_prompt = f"{context}\n\n--- Patient Record ---\n{extracted_text}\n\n[Final Analysis]"
# Model processing with timing
model_start = time.time()
generator = agent.run_gradio_chat(
message=chunked_prompt,
history=[],
temperature=0.3,
max_new_tokens=768, # Reduced from 1024
max_token=4096, # Reduced from 8192
call_agent=False,
conversation=conversation,
uploaded_files=uploaded_files,
max_round=10 # Reduced from 30
)
final_response = []
for update in generator:
if not update:
continue
if isinstance(update, str):
final_response.append(update)
elif isinstance(update, list):
final_response.extend(msg.content for msg in update if hasattr(msg, 'content'))
# Yield intermediate results periodically
if len(final_response) % 3 == 0: # More frequent updates
history[-1] = {"role": "assistant", "content": "".join(final_response).strip()}
yield history
history[-1] = {"role": "assistant", "content": "".join(final_response).strip() or "❌ No response."}
print(f"Model processing took: {time.time() - model_start:.2f}s")
yield history
except Exception as chat_error:
print(f"Chat handling error: {chat_error}")
history[-1] = {"role": "assistant", "content": "❌ An error occurred while processing your request."}
yield history
finally:
print(f"Total request time: {time.time() - start_time:.2f}s")
inputs = [message_input, chatbot, conversation_state, file_upload]
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot)
gr.Examples([
["Upload your medical form and ask what the doctor might've missed."],
["This patient was treated with antibiotics for UTI. What else should we check?"],
["Is there anything abnormal in the attached blood work report?"]
], inputs=message_input)
return demo
if __name__ == "__main__":
# Initialize agent and warm it up
print("Initializing agent...")
agent = init_agent()
# Warm-up call
print("Performing warm-up call...")
try:
warm_up = agent.run_gradio_chat(
message="Warm up",
history=[],
temperature=0.1,
max_new_tokens=10,
max_token=100,
call_agent=False
)
for _ in warm_up:
pass
except:
pass
# Launch Gradio interface
print("Launching interface...")
demo = create_ui(agent)
demo.queue(concurrency_count=3).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
share=True
)