File size: 9,669 Bytes
1bb8be7
dae38a2
 
 
 
1bb8be7
dae38a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bb8be7
dae38a2
1bb8be7
 
dae38a2
 
05f1ef4
dae38a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05f1ef4
dae38a2
05f1ef4
 
9db0d8b
 
05f1ef4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Optional
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import time
from functools import lru_cache

# Environment and path setup
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))

# Configure cache directories
base_dir = "/data"
model_cache_dir = os.path.join(base_dir, "txagent_models")
tool_cache_dir = os.path.join(base_dir, "tool_cache")
file_cache_dir = os.path.join(base_dir, "cache")

os.makedirs(model_cache_dir, exist_ok=True)
os.makedirs(tool_cache_dir, exist_ok=True)
os.makedirs(file_cache_dir, exist_ok=True)

os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["HF_HOME"] = model_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

from txagent.txagent import TxAgent

# Utility functions
def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

@lru_cache(maxsize=100)
def get_cached_response(prompt: str, file_hash: str) -> Optional[str]:
    """Cache for frequent queries"""
    return None  # Implement actual cache lookup if needed

def convert_file_to_json(file_path: str, file_type: str) -> str:
    try:
        h = file_hash(file_path)
        cache_path = os.path.join(file_cache_dir, f"{h}.json")

        if os.path.exists(cache_path):
            return open(cache_path, "r", encoding="utf-8").read()

        if file_type == "csv":
            df = pd.read_csv(file_path, encoding_errors="replace", header=None, 
                            dtype=str, skip_blank_lines=False, on_bad_lines="skip")
        elif file_type in ["xls", "xlsx"]:
            try:
                df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            except:
                df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
        elif file_type == "pdf":
            with pdfplumber.open(file_path) as pdf:
                text = "\n".join([page.extract_text() or "" for page in pdf.pages])
            result = json.dumps({"filename": os.path.basename(file_path), "content": text.strip()})
            with open(cache_path, "w", encoding="utf-8") as f:
                f.write(result)
            return result
        else:
            return json.dumps({"error": f"Unsupported file type: {file_type}"})

        if df is None or df.empty:
            return json.dumps({"warning": f"No data extracted from: {file_path}"})

        df = df.fillna("")
        content = df.astype(str).values.tolist()
        result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        return result
    except Exception as e:
        return json.dumps({"error": f"Error reading {os.path.basename(file_path)}: {str(e)}"})

def convert_files_to_json_parallel(uploaded_files: list) -> str:
    """Process files in parallel using ThreadPool"""
    extracted_text = []
    with ThreadPoolExecutor(max_workers=4) as executor:
        futures = []
        for file in uploaded_files:
            if not hasattr(file, 'name'):
                continue
            path = file.name
            ext = path.split(".")[-1].lower()
            futures.append(executor.submit(convert_file_to_json, path, ext))
        
        for future in as_completed(futures):
            extracted_text.append(sanitize_utf8(future.result()))
    return "\n".join(extracted_text)

def init_agent():
    """Initialize the TxAgent with optimized settings"""
    # Copy default tool file if needed
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B"
    rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B"
    
    agent = TxAgent(
        model_name=model_name,
        rag_model_name=rag_model_name,
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=8,  # Reduced from 10
        seed=100,
        additional_default_tools=[],
        torch_dtype="auto",
        device_map="auto",
        load_in_4bit=False,
        load_in_8bit=False
    )
    agent.init_model()
    return agent

def create_ui(agent: TxAgent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>📋 CPS: Clinical Patient Support System</h1>")

        chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages")
        file_upload = gr.File(
            label="Upload Medical File",
            file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"],
            file_count="multiple"
        )
        message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False)
        send_button = gr.Button("Send", variant="primary")
        conversation_state = gr.State([])

        def handle_chat(message: str, history: list, conversation: list, uploaded_files: list, progress=gr.Progress()):
            start_time = time.time()
            try:
                history.append({"role": "user", "content": message})
                history.append({"role": "assistant", "content": "⏳ Processing your request..."})
                yield history

                # File processing with timing
                file_process_time = time.time()
                extracted_text = ""
                if uploaded_files and isinstance(uploaded_files, list):
                    extracted_text = convert_files_to_json_parallel(uploaded_files)
                print(f"File processing took: {time.time() - file_process_time:.2f}s")

                context = (
                    "You are an expert clinical AI assistant. Review this patient's history, "
                    "medications, and notes, and ONLY provide a final answer summarizing "
                    "what the doctor might have missed."
                )
                chunked_prompt = f"{context}\n\n--- Patient Record ---\n{extracted_text}\n\n[Final Analysis]"

                # Model processing with timing
                model_start = time.time()
                generator = agent.run_gradio_chat(
                    message=chunked_prompt,
                    history=[],
                    temperature=0.3,
                    max_new_tokens=768,  # Reduced from 1024
                    max_token=4096,      # Reduced from 8192
                    call_agent=False,
                    conversation=conversation,
                    uploaded_files=uploaded_files,
                    max_round=10       # Reduced from 30
                )

                final_response = []
                for update in generator:
                    if not update:
                        continue
                    if isinstance(update, str):
                        final_response.append(update)
                    elif isinstance(update, list):
                        final_response.extend(msg.content for msg in update if hasattr(msg, 'content'))
                    
                    # Yield intermediate results periodically
                    if len(final_response) % 3 == 0:  # More frequent updates
                        history[-1] = {"role": "assistant", "content": "".join(final_response).strip()}
                        yield history

                history[-1] = {"role": "assistant", "content": "".join(final_response).strip() or "❌ No response."}
                print(f"Model processing took: {time.time() - model_start:.2f}s")
                yield history

            except Exception as chat_error:
                print(f"Chat handling error: {chat_error}")
                history[-1] = {"role": "assistant", "content": "❌ An error occurred while processing your request."}
                yield history
            finally:
                print(f"Total request time: {time.time() - start_time:.2f}s")

        inputs = [message_input, chatbot, conversation_state, file_upload]
        send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
        message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot)

        gr.Examples([
            ["Upload your medical form and ask what the doctor might've missed."],
            ["This patient was treated with antibiotics for UTI. What else should we check?"],
            ["Is there anything abnormal in the attached blood work report?"]
        ], inputs=message_input)

    return demo

if __name__ == "__main__":
    # Initialize agent and warm it up
    print("Initializing agent...")
    agent = init_agent()
    
    # Warm-up call
    print("Performing warm-up call...")
    try:
        warm_up = agent.run_gradio_chat(
            message="Warm up",
            history=[],
            temperature=0.1,
            max_new_tokens=10,
            max_token=100,
            call_agent=False
        )
        for _ in warm_up:
            pass
    except:
        pass
    
    # Launch Gradio interface
    print("Launching interface...")
    demo = create_ui(agent)
    demo.queue(concurrency_count=3).launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        share=True
    )