CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
d184610 verified
raw
history blame
15.8 kB
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any
import hashlib
import shutil
import re
from datetime import datetime
import time
import markdown
from collections import defaultdict
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
def file_hash(path: str) -> str:
"""Generate MD5 hash of file contents"""
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def clean_response(text: str) -> str:
"""Clean and normalize text output"""
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
# Remove unwanted patterns and normalize whitespace
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def extract_medical_data(df: pd.DataFrame) -> Dict[str, Any]:
"""Extract and organize medical data from DataFrame"""
medical_data = defaultdict(list)
for _, row in df.iterrows():
record = {
'form_name': row.get('Form Name', ''),
'form_item': row.get('Form Item', ''),
'response': row.get('Item Response', ''),
'date': row.get('Interview Date', ''),
'interviewer': row.get('Interviewer', ''),
'description': row.get('Description', '')
}
medical_data[row['Booking Number']].append(record)
return medical_data
def identify_red_flags(records: List[Dict[str, Any]]) -> Dict[str, List[str]]:
"""Identify potential red flags in medical records"""
red_flags = {
'symptoms': defaultdict(list),
'medications': defaultdict(list),
'diagnoses': defaultdict(list),
'vitals': defaultdict(list),
'labs': defaultdict(list)
}
for record in records:
form_name = record['form_name'].lower()
item = record['form_item'].lower()
response = record['response'].lower()
# Symptom patterns
if 'pain' in item or 'symptom' in form_name:
if 'severe' in response or 'chronic' in response:
red_flags['symptoms'][item].append(response)
# Medication checks
elif 'medication' in form_name or 'drug' in form_name:
if 'interaction' in response or 'allergy' in response:
red_flags['medications'][item].append(response)
# Diagnosis inconsistencies
elif 'diagnosis' in form_name:
if 'rule out' in response or 'possible' in response:
red_flags['diagnoses'][item].append(response)
# Abnormal vitals
elif 'vital' in form_name:
try:
value = float(re.search(r'\d+\.?\d*', response).group())
if ('blood pressure' in item and value > 140) or \
('heart rate' in item and (value < 50 or value > 100)) or \
('temperature' in item and value > 38):
red_flags['vitals'][item].append(response)
except:
pass
# Abnormal labs
elif 'lab' in form_name or 'test' in form_name:
if 'abnormal' in response or 'high' in response or 'low' in response:
red_flags['labs'][item].append(response)
return red_flags
def generate_analysis_prompt(booking: str, records: List[Dict[str, Any]], red_flags: Dict[str, Any]]) -> str:
"""Generate structured prompt for analysis"""
records_text = "\n".join(
f"- {r['form_name']}: {r['form_item']} = {r['response']} ({r['date']} by {r['interviewer']})\n {r['description']}"
for r in records
)
red_flags_text = "\n".join(
f"### {category.capitalize()} Red Flags\n" + "\n".join(
f"- {item}: {', '.join(responses)}"
for item, responses in items.items()
)
for category, items in red_flags.items() if items
)
prompt = f"""
**Patient Booking Number**: {booking}
**Medical Records Summary**:
{records_text}
**Identified Red Flags**:
{red_flags_text if red_flags_text else "No obvious red flags detected"}
**Comprehensive Analysis Instructions**:
1. Review all medical data and red flags above
2. Identify any potential missed diagnoses based on symptoms, labs, and clinical findings
3. Check for medication conflicts or inappropriate prescriptions
4. Note any incomplete assessments or missing diagnostic workups
5. Flag any urgent follow-up needs or critical findings
6. Provide recommendations in clear, actionable terms
**Required Output Format**:
### Missed Diagnoses
- [List any conditions that may have been overlooked based on the data]
### Medication Issues
- [List any medication conflicts, inappropriate prescriptions, or missing medications]
### Assessment Gaps
- [List any incomplete assessments or missing diagnostic tests]
### Urgent Follow-up
- [List any findings requiring immediate attention]
### Clinical Recommendations
- [Provide specific recommendations for next steps]
"""
return prompt
def parse_excel_to_prompts(file_path: str) -> List[Tuple[str, str]]:
"""Parse Excel file into analysis prompts with red flag detection"""
try:
xl = pd.ExcelFile(file_path)
df = xl.parse(xl.sheet_names[0], header=0).fillna("")
medical_data = extract_medical_data(df)
prompts = []
for booking, records in medical_data.items():
red_flags = identify_red_flags(records)
prompt = generate_analysis_prompt(booking, records, red_flags)
prompts.append((booking, prompt))
return prompts
except Exception as e:
raise ValueError(f"Error parsing Excel file: {str(e)}")
def init_agent():
"""Initialize the TxAgent with appropriate settings"""
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
return agent
def format_markdown(text: str) -> str:
"""Convert markdown text to HTML for better display"""
return markdown.markdown(text, extensions=['fenced_code', 'tables'])
def create_ui(agent):
"""Create Gradio UI interface"""
with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
gr.Markdown("# 🏥 Clinical Oversight Assistant (Missed Diagnosis Detection)")
with gr.Tabs():
with gr.TabItem("Analysis"):
with gr.Row():
# Left column - Inputs
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload Excel File",
file_types=[".xlsx"],
file_count="single",
interactive=True
)
msg_input = gr.Textbox(
label="Additional Instructions",
placeholder="Add any specific analysis requests...",
lines=3
)
with gr.Row():
clear_btn = gr.Button("Clear", variant="secondary")
send_btn = gr.Button("Analyze", variant="primary")
# Right column - Outputs
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Analysis Results",
height=600,
bubble_full_width=False,
show_copy_button=True,
render_markdown=True
)
download_output = gr.File(
label="Download Full Report",
interactive=False
)
with gr.TabItem("Instructions"):
gr.Markdown("""
## How to Use This Tool
1. **Upload Excel File**: Select your patient records Excel file
2. **Add Instructions** (Optional): Provide any specific analysis requests
3. **Click Analyze**: The system will process each patient record
4. **Review Results**: Analysis appears in the chat window
5. **Download Report**: Get a full text report of all findings
### Excel File Requirements
Your Excel file must contain these columns:
- Booking Number (patient identifier)
- Form Name (type of medical form)
- Form Item (specific field name)
- Item Response (patient response or value)
- Interview Date (date of recording)
- Interviewer (who recorded the data)
- Description (additional notes)
### Analysis Includes
- **Missed diagnoses**: Potential conditions not identified
- **Medication issues**: Conflicts, side effects, inappropriate prescriptions
- **Assessment gaps**: Missing tests or incomplete evaluations
- **Urgent follow-up**: Critical findings needing immediate attention
- **Clinical recommendations**: Actionable next steps
""")
def format_message(role: str, content: str) -> Tuple[str, str]:
"""Format messages for the chatbot in (user, bot) format"""
if role == "user":
return (content, None)
else:
return (None, content)
def analyze(message: str, chat_history: List[Tuple[str, str]], file) -> Tuple[List[Tuple[str, str]], str]:
"""Main analysis function"""
if not file:
raise gr.Error("Please upload an Excel file first")
try:
# Initialize chat history with user message
new_history = chat_history + [format_message("user", message)]
new_history.append(format_message("assistant", "⏳ Processing Excel data..."))
yield new_history, None
prompts = parse_excel_to_prompts(file.name)
full_output = ""
for idx, (booking, prompt) in enumerate(prompts, 1):
chunk_output = ""
try:
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=1024,
max_token=4096,
call_agent=False,
conversation=[],
):
if isinstance(result, list):
for r in result:
if hasattr(r, 'content') and r.content:
cleaned = clean_response(r.content)
chunk_output += cleaned + "\n"
elif isinstance(result, str):
cleaned = clean_response(result)
chunk_output += cleaned + "\n"
if chunk_output:
output = f"## Patient Booking: {booking}\n{chunk_output.strip()}\n"
new_history[-1] = format_message("assistant", output)
yield new_history, None
except Exception as e:
error_msg = f"⚠️ Error processing booking {booking}: {str(e)}"
new_history.append(format_message("assistant", error_msg))
yield new_history, None
continue
if chunk_output:
output = f"## Patient Booking: {booking}\n{chunk_output.strip()}\n"
new_history.append(format_message("assistant", output))
full_output += output + "\n"
yield new_history, None
# Save report
file_hash_value = file_hash(file.name)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
report_path = os.path.join(report_dir, f"{file_hash_value}_{timestamp}_report.md")
with open(report_path, "w", encoding="utf-8") as f:
f.write("# Clinical Oversight Analysis Report\n\n")
f.write(f"**Generated on**: {timestamp}\n\n")
f.write(f"**Source file**: {file.name}\n\n")
f.write(full_output)
yield new_history, report_path if os.path.exists(report_path) else None
except Exception as e:
new_history.append(format_message("assistant", f"❌ Error: {str(e)}"))
yield new_history, None
raise gr.Error(f"Analysis failed: {str(e)}")
def clear_chat():
"""Clear chat history and outputs"""
return [], None
# Event handlers
send_btn.click(
analyze,
inputs=[msg_input, chatbot, file_upload],
outputs=[chatbot, download_output],
api_name="analyze"
)
msg_input.submit(
analyze,
inputs=[msg_input, chatbot, file_upload],
outputs=[chatbot, download_output]
)
clear_btn.click(
clear_chat,
inputs=[],
outputs=[chatbot, download_output]
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.queue(
api_open=False,
max_size=20
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
except Exception as e:
print(f"Failed to launch application: {str(e)}")
sys.exit(1)