|
import sys |
|
import os |
|
import pdfplumber |
|
import json |
|
import gradio as gr |
|
from typing import List |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
import hashlib |
|
import re |
|
import psutil |
|
import subprocess |
|
from collections import defaultdict |
|
from vllm import LLM, SamplingParams |
|
|
|
|
|
persistent_dir = os.getenv("HF_HOME", "/data/hf_cache") |
|
os.makedirs(persistent_dir, exist_ok=True) |
|
|
|
model_cache_dir = os.path.join(persistent_dir, "txagent_models") |
|
file_cache_dir = os.path.join(persistent_dir, "cache") |
|
report_dir = os.path.join(persistent_dir, "reports") |
|
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache") |
|
|
|
for directory in [model_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]: |
|
os.makedirs(directory, exist_ok=True) |
|
|
|
os.environ["HF_HOME"] = model_cache_dir |
|
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir |
|
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
os.environ["CUDA_LAUNCH_BLOCKING"] = "1" |
|
os.environ["VLLM_NO_TORCH_COMPILE"] = "1" |
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
src_path = os.path.abspath(os.path.join(current_dir, "src")) |
|
sys.path.insert(0, src_path) |
|
|
|
from txagent.txagent import TxAgent, clean_response |
|
|
|
def sanitize_utf8(text: str) -> str: |
|
return text.encode("utf-8", "ignore").decode("utf-8") |
|
|
|
def file_hash(path: str) -> str: |
|
with open(path, "rb") as f: |
|
return hashlib.md5(f.read()).hexdigest() |
|
|
|
def extract_all_pages(file_path: str) -> str: |
|
try: |
|
text_chunks = [] |
|
with pdfplumber.open(file_path) as pdf: |
|
for page in pdf.pages: |
|
page_text = page.extract_text() or "" |
|
text_chunks.append(page_text.strip()) |
|
return "\n".join(text_chunks) |
|
except Exception as e: |
|
return f"PDF processing error: {str(e)}" |
|
|
|
def convert_file_to_json(file_path: str, file_type: str) -> str: |
|
try: |
|
h = file_hash(file_path) |
|
cache_path = os.path.join(file_cache_dir, f"{h}.json") |
|
if os.path.exists(cache_path): |
|
with open(cache_path, "r", encoding="utf-8") as f: |
|
return f.read() |
|
if file_type == "pdf": |
|
text = extract_all_pages(file_path) |
|
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"}) |
|
else: |
|
result = json.dumps({"error": f"Unsupported file type: {file_type}"}) |
|
with open(cache_path, "w", encoding="utf-8") as f: |
|
f.write(result) |
|
return result |
|
except Exception as e: |
|
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}) |
|
|
|
def log_system_usage(tag=""): |
|
try: |
|
cpu = psutil.cpu_percent(interval=1) |
|
mem = psutil.virtual_memory() |
|
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB") |
|
result = subprocess.run( |
|
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"], |
|
capture_output=True, text=True |
|
) |
|
if result.returncode == 0: |
|
used, total, util = result.stdout.strip().split(", ") |
|
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%") |
|
except Exception as e: |
|
print(f"[{tag}] GPU/CPU monitor failed: {e}") |
|
|
|
def normalize_text(text: str) -> str: |
|
return re.sub(r"\s+", " ", text.lower().strip()) |
|
|
|
def consolidate_findings(responses: List[str]) -> str: |
|
findings = defaultdict(set) |
|
headings = ["Missed Diagnoses", "Medication Conflicts", "Incomplete Assessments", "Urgent Follow-up"] |
|
|
|
for response in responses: |
|
if not response: |
|
continue |
|
current_heading = None |
|
for line in response.split("\n"): |
|
line = line.strip() |
|
if not line: |
|
continue |
|
if line.lower().startswith(tuple(h.lower() + ":" for h in headings)): |
|
current_heading = next(h for h in headings if line.lower().startswith(h.lower() + ":")) |
|
elif current_heading and line.startswith("-"): |
|
findings[current_heading].add(normalize_text(line)) |
|
|
|
output = [] |
|
for heading in headings: |
|
if findings[heading]: |
|
output.append(f"**{heading}**:") |
|
original_lines = {normalize_text(r): r for r in sum([r.split("\n") for r in responses], []) if r.startswith("-")} |
|
output.extend(sorted(original_lines.get(n, "- " + n) for n in findings[heading])) |
|
return "\n".join(output).strip() if output else "No oversights identified." |
|
|
|
def init_agent(): |
|
print("π Initializing model...") |
|
log_system_usage("Before Load") |
|
model = LLM( |
|
model="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
max_model_len=4096, |
|
enforce_eager=True, |
|
enable_chunked_prefill=True, |
|
max_num_batched_tokens=8192, |
|
gpu_memory_utilization=0.5, |
|
) |
|
log_system_usage("After Load") |
|
print("β
Model Ready") |
|
return model |
|
|
|
def create_ui(model): |
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("<h1 style='text-align: center;'>π©Ί Clinical Oversight Assistant</h1>") |
|
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages") |
|
file_upload = gr.File(file_types=[".pdf"], file_count="multiple") |
|
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False) |
|
send_btn = gr.Button("Analyze", variant="primary") |
|
download_output = gr.File(label="Download Report") |
|
|
|
def analyze(message: str, history: List[dict], files: List): |
|
history.append({"role": "user", "content": message}) |
|
history.append({"role": "assistant", "content": "π Analyzing..."}) |
|
yield history, None |
|
|
|
extracted = "" |
|
file_hash_value = "" |
|
if files: |
|
with ThreadPoolExecutor(max_workers=6) as executor: |
|
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files] |
|
results = [sanitize_utf8(f.result()) for f in as_completed(futures)] |
|
extracted = "\n".join([json.loads(r).get("content", "") for r in results if "content" in json.loads(r)]) |
|
file_hash_value = file_hash(files[0].name) if files else "" |
|
|
|
chunk_size = 800 |
|
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)] |
|
chunk_responses = [] |
|
batch_size = 4 |
|
total_chunks = len(chunks) |
|
|
|
prompt_template = """ |
|
Strictly output oversights under these exact headings, one point per line, starting with "-". No other text, reasoning, or tools. |
|
|
|
**Missed Diagnoses**: |
|
**Medication Conflicts**: |
|
**Incomplete Assessments**: |
|
**Urgent Follow-up**: |
|
|
|
Records: |
|
{chunk} |
|
""" |
|
|
|
sampling_params = SamplingParams( |
|
temperature=0.3, |
|
max_tokens=64, |
|
seed=100, |
|
) |
|
|
|
try: |
|
findings = defaultdict(list) |
|
for i in range(0, len(chunks), batch_size): |
|
batch = chunks[i:i + batch_size] |
|
prompts = [prompt_template.format(chunk=chunk) for chunk in batch] |
|
log_system_usage(f"Batch {i//batch_size + 1}") |
|
outputs = model.generate(prompts, sampling_params, use_tqdm=True) |
|
batch_responses = [] |
|
with ThreadPoolExecutor(max_workers=4) as executor: |
|
futures = [executor.submit(clean_response, output.outputs[0].text) for output in outputs] |
|
batch_responses.extend(f.result() for f in as_completed(futures)) |
|
|
|
processed = min(i + len(batch), total_chunks) |
|
batch_output = [] |
|
for response in batch_responses: |
|
if response: |
|
chunk_responses.append(response) |
|
current_heading = None |
|
for line in response.split("\n"): |
|
line = line.strip() |
|
if line.lower().startswith(tuple(h.lower() + ":" for h in ["missed diagnoses", "medication conflicts", "incomplete assessments", "urgent follow-up"])): |
|
current_heading = line[:-1] |
|
if current_heading not in batch_output: |
|
batch_output.append(current_heading + ":") |
|
elif current_heading and line.startswith("-"): |
|
findings[current_heading].append(line) |
|
batch_output.append(line) |
|
|
|
|
|
if batch_output: |
|
history[-1]["content"] = "\n".join(batch_output) + f"\n\nπ Processing chunk {processed}/{total_chunks}..." |
|
else: |
|
history[-1]["content"] = f"π Processing chunk {processed}/{total_chunks}..." |
|
yield history, None |
|
|
|
|
|
final_response = consolidate_findings(chunk_responses) |
|
history[-1]["content"] = final_response |
|
yield history, None |
|
|
|
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None |
|
if report_path and final_response != "No oversights identified.": |
|
with open(report_path, "w", encoding="utf-8") as f: |
|
f.write(final_response) |
|
yield history, report_path if report_path and os.path.exists(report_path) else None |
|
|
|
except Exception as e: |
|
print("π¨ ERROR:", e) |
|
history[-1]["content"] = f"β Error: {str(e)}" |
|
yield history, None |
|
|
|
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output]) |
|
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output]) |
|
return demo |
|
|
|
if __name__ == "__main__": |
|
print("π Launching app...") |
|
model = init_agent() |
|
demo = create_ui(model) |
|
demo.queue(api_open=False).launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
show_error=True, |
|
allowed_paths=[report_dir], |
|
share=False |
|
) |